

 The 1 hour Event Storming book

 Matthieu Tournemire and Philippe Bourgau

 2025-04-14

The 1 hour Event Storming book

[image: TODO: Cover image caption]
TODO: Cover image caption

Why this book?

Close collaboration between business and tech is great on paper… but how do you do it, concretely?

Event Storming looks like a great way to get started, but it’s a scary beast to master! How do I actually run this workshop with more than 10 people?

This Event Storming e-book is a step by step guide that will successfully lead you through your first workshop!

	It’s short. You can read it in less than 1 hour.

	It covers the 3 main flavors of Event Storming.

	It contains a part about remote facilitations.

	It will save you from typical mistakes with 25 facilitation tips that we learnt the hard way.

And guess what? It even contains drawings! Start reading now, and in 1 hour, you’ll be ready to run your first Event Storming.

📝 Version information

You are reading:

v0.3.1 (Mon, Apr 14, 2025 5:18:37 AM)

	Fix typos in below changelog.

v0.3.0 (Mon, Apr 14, 2025 5:01:13 AM)

	Start writing part 6 about Remote Event Storming:

	New chapter “Why Go Remote with Event Storming? The Surprising Benefits”

	New chapter “Simplify Remote Event Storming With 7 Essential Practices”

	New chapter “Your Step-by-Step Guide to Remote Event Storming” with both preparation and workshop facilitation walkthrough

	Improvements to .epub:

	Fix an error that was appearing in Apple Books, which stripped out the end of the big picture part

	Improve styling for .epub

	Add recommendations about how to get the best reading experience with .epub

	Add two new chapters in 5. Event Storming The Flow

	“Identify where to act to improve your workflow”:

	“Define actions that unlock lasting workflow improvements”

	Improve transition between chapters:

	Rework the lead statements into a 1-liner of the chapter description

	Remove the first lines that would only be a summary of the previous chapter

v0.2.0 (Wed, Oct 23, 2024 3:57:40 PM)

(First version to be published to the mailing list and on the website)

	New chapter in 7. General tips for Event Storming: “Need Help with Event Storming? The community has your back!”

	Embed tips throughout the book as sidenotes:

	Facilitation

	Time mamagement

	Technical anti-patterns

	Shared domain knowledge

	fix typos from reviews

	Event Storming the flow part updated with review comments taken into account

	Clarify words and context introduction in the flow of the book (functional architecutre, DDD, Bounded Context)

	add side note to highlight the impact of architecture culture on Event Storming

	add note about not a silver bullet, and forward link to “what about critical supportive domains?”

	add communication benefits at the code level

	Move intro speech to Big Picture step by step guide

v0.1.0 (March 2024)

(First version to be reviewed)

	First draft of the book for reviews.

	Almost final text for parts:

	Intro

	Big Picture Event Storming

	Design Level Event Storming

	Event Storming the flow finished at 80%

	Almost empty:

	Remote Event Storming

	Event storming tips

	Conclusion

	Styling of epub almost finished

1 Preamble

1.1 How to read this book

TODO:

	supposed 1h, a bit longer… but we wanted to keep it very detailed and ready to use

	we also had to add the remote part, which we decided we had to do very detailed as well

	can pick the right flavor for you, should stick to 1h

	can skip the tips at first (should we provide an index of tips?)

	ment to be very detailed facilitation guide

1.2 If you are reading the epub version

We took some time to style the book so we advice you to use an epub reader and settings that respect the original style as much as possible. Here is where we tested that it renders well: - On iOS and MacOS, the “Books” app works great, just select the original style - On Windows, the “Freda” ebook reader has an option to use the “publisher’s style” - Overall, it renders better on a clear background

That said, epub is meant to be customizable, so it’s up to you!

2 The essence of Event storming

ℹ️ In this chapter: Identify events on stickies to make sure they happen as you wish. This is what event storming is about. This first chapter is an overview of the technique and its benefits.

2.1 Events are things that happen

Things happened for you this morning at the start of your day.

You probably heard the alarm clock, then switched it off. When it rang again, you got up, showered, got dressed, had breakfast, etc.

[image: The steps of a morning routine]
The steps of a morning routine

All these are past events.

Events will also happen in the future.

If you imagine the next weekend, for example, you may wish to have done the following stuff by Sunday:

	played with your kids,

	slept for 8 hours on Saturday night,

	had a drink with friends,

	bought some groceries at the local shop,

	had a nice dinner with your partner,

	watched the next chapter of your favorite series.

Event storming is the act of displaying these events on a wall.

[image: The steps of your weekend]
The steps of your weekend

That’s it! You’ve now understood what event storming is about!

Ok, ok… maybe you want to know a bit more, but, honestly, you already know all the basics!

Event storming is a technique to collectively visualize events and do something from there.

2.2 Why would you want to visualize events on a wall?

Like the tip of an iceberg rising above the water, events are the most visible aspects of a larger complex - but not always the most important - Donella H. Meadows in Thinking in Systems

Guess what? Events do not happen by magic!

To use Donella Meadows’s iceberg metaphor, once events are visible, you can look below the surface. And the system structure is what resides below the surface. The structure of a system is what causes its repetitive behavior, which in turn is observed through events.

[image: Iceberg with events at the top, behavior at the bottom and structure below the surface]
Iceberg with events at the top, behavior at the bottom and structure below the surface

Here is an example from this morning:

	You switched off the alarm clock this morning (event).

	You do this 4 times every morning on average (repetitive behavior)

	And, guess what: every night, the concentration of caffeine in your blood is high (this concentration is one expression of the system structure)

2.3 Summary: what is event storming about?

To summarize, when you do event storming:

	you start by visualizing the events, the easily observable things

	then you dig into behavior and system structures

Your goal can be, at will:

	either to change an existing system for the better

	or to design a system that will allow the desired events to happen (and the undesired ones to not happen).

Hopefully, at this stage, you are starting to get a sense of what event storming is about.

In the next part, you will learn how to use Event Storming to draft a software design in details.

Later in the book, you will discover that Event Storming can also be used to improve a workflow

3 Big picture Event Storming

3.1 Why would you want to run a big picture event storming?

ℹ️ In this chapter: The traditional ways to define your architecture can result in slow delivery. Here are 3 simple checks to determine if Big Picture Event Storming is the good alternative approach.

3.1.1 Two architecture failure stories

[image: Drawing of a Jenga tower about to fall. Traditional software architecture approaches often feel like playing a game of Jenga, where any decision can cause a catastrophe.]
Drawing of a Jenga tower about to fall. Traditional software architecture approaches often feel like playing a game of Jenga, where any decision can cause a catastrophe.

📝 What do we mean by Software Architecture? Software architecture refers to the fundamental structures of a software system and the discipline of creating such structures and systems. (Wikipedia) This includes high-level requirements workshops, user exchange discussions, and domain knowledge sharing.

3.1.1.1 How big design up-front and ivory tower architecture fail?

A few years ago, I (Philippe) worked for a bank as a contractor. I quickly noticed that everybody was talking about the PXT project. After a few more days, I understood that PXT was a massive project with an ambitious goal. The project aimed at re-designing fundamental banking abstractions through the whole information system.

Architects and business ‘visionaries’ had planned the project without involving ‘mortal’ developers. As the project moved on, this new model kept looking more unrealistic. Yet, the project lingered for a few years, involving hundreds of people. Ultimately, it was canceled, leaving wasted time and code bases in schizophrenic states.

[image: Photo of a white tower. Architecture is often done by experts alone, what we call “Ivory Tower Architecture”. Although known not to work well, this architecture strategy remains wide-spread.]
Photo of a white tower. Architecture is often done by experts alone, what we call “Ivory Tower Architecture”. Although known not to work well, this architecture strategy remains wide-spread.

This story could serve as a case study for ivory tower architecture. Indeed, as often with this kind of project, PXT was a failure:

	The system did not evolve in the desired direction. It did not deliver its promises on performance, maintainability, evolvability, operations, support…

	The project cost a lot more than the initial plan. The scope kept growing to accommodate for what was missing from the initial blueprint.

	Business experts and architects had wasted a lot of time trying to figure out all the details up front.

	Team members did not feel engaged in the project. They had not been involved in any decision-making. Many of them saw themselves as mere executors.

3.1.1.2 How does emergent architecture fail?

If Big Up-Front Design does not work, could emergent architecture be a better strategy? In many ways, it is, but it also comes with its own issues.

Some time ago, I (Philippe) decided to learn the Ruby programming language, so I started attending Ruby meetups. Most Ruby developers work with Rails, a framework for building web applications. As I chatted with Rails programmers, I discovered that most were facing the same issue. As their code base grew, they all ended up crawling in a monolith of dependency.

Rails is a beautiful platform. In no time, you can set up a perfectly working website that looks great and that is thoroughly tested. Rails comes with design guidelines and an extensive test harness. Unfortunately, these are so handy that most developers overgrow their applications inside them. Nevertheless, it happens smoothly, slowly, and safely, delivering features along the way. Yet one day, they realize that new features have become incredibly slow to write!

[image: Photo of a Lego Star Wars Stormtrooper emerging from an egg shell. Emergent architecture is another wide-spread strategy. In practice, it often looks like ‘we’ll do the architecture later’.]
Photo of a Lego Star Wars Stormtrooper emerging from an egg shell. Emergent architecture is another wide-spread strategy. In practice, it often looks like ‘we’ll do the architecture later’.

Here is what we observed with this kind of 100%-emergent style of architecture:

	Non-developers have no clue about what developers are doing. The code has become a big ball of dependencies. This makes it difficult to communicate any kind of status to people who don’t code.

	With enough tests and refactoring skills, developers can implement any feature. Yet, it always takes more time than expected! ‘Refactoring’ repeatedly comes up as the explanation for the extra time.

3.1.1.3 Both these approaches waste time and effort and result in slow delivery!

Both emergent and Big Up-Front Design architecture are failure strategies! Should we abandon all hope?

Wouldn’t it be great if we had a magic spell to avoid these pitfalls?

It turns out there is a middle way, and it’s called Big Picture Event Storming!

3.1.2 Common symptoms

Let’s first understand the problem itself. Although these two stories sit at both ends of the spectrum, they have key elements in common!

3.1.2.1 No obvious solution

Let’s reason by absurd and suppose there was an evident architecture:

	Architects would have found it upfront… And everything would have flowed nicely from there!

	Or the developers doing emergent design would have quickly refactored their code towards this obvious solution… And everything would have flowed nicely from there!

Our two stories did not end that way, meaning there was no evident architecture!

3.1.2.2 Not a lack of skills

Nowhere in the story did we hear about people failing to do something. Improving any of the people’s skills would not have changed the story. Suppose developers get better at refactoring, and architects better at designing. Developers would have spun the refactoring wheel a bit faster. Architects might have saved 1 day of architecture meetings. Yet, the projects would have remained stuck in their failure loop in both stories!

3.1.2.3 The problem persists

In both stories, the teams were trapped in a repeating loop. Whatever efforts the people put into doing-it-better-this-time, the loop repeats itself:

	Doing more design up front means more time spent on architecture and more delays. It’s also betting on the future, which means even more delays when the real-future comes to life!

	Doing more emergent design means deferring all clean-up for the next feature. Think of it as leaving the kitchen in a mess after cooking. This slows the delivery of upcoming features and makes any architecture change daunting.

[image: Photo of a kitchen where everything was left as-is after some cooking. This is what the code looks like after developing a feature when we adopt extremist emergent architecture.]
Photo of a kitchen where everything was left as-is after some cooking. This is what the code looks like after developing a feature when we adopt extremist emergent architecture.

Whatever approach you chose, doing ‘more’ of it will not fix the challenge!

3.1.3 Big Picture Event Storming is the middle way!

Big Picture Event Storming puts everyone together to define a “Rough Up-Front Design” in 2 days.

	Big Picture Event Storming is not trying to do everything right the first time. Instead, it acknowledges that it’s better to start with a rough design and improve from there.

	Big Picture Event Storming is not discovering everything as we go. Instead, it acknowledges that a bit of up-front thinking might save us a lot of time down the road.

	Big Picture Event Storming works best when followed with incremental and emergent design:

	To continuously steer the codebase towards the agreed architecture vision

	While leaving options open.

We should also re-run the Big Picture Event Storming from time to time to update the vision.

Compared to traditional architecture, Big Picture Event Storming features unique benefits:

	Everyone will feel engaged and responsible for the decisions made during the event.

	Thanks to face-to-face communication, the workshop grows common knowledge of the problem.

	The workshop triggers open and honest communication between everyone involved. As a result, everybody gets a clear status of where we all stand.

Ultimately, Big Picture Event Storming impacts the users’ lives sooner!

📝 What about culture? One reviewer rightfully noted that these failure examples are not only about the tool but also about the design culture. Indeed, both examples highlight some extreme forms of architecture culture. Event Storming, as a middle-way practice, will work better in a collaborative and adaptive culture. Yet, before we knew about Event Storming, we were at a loss about how to apply such culture in practice! For us, Event Storming was the key to unlock this culture. Even more, Event Storming showcases a different way to people, and nudges the culture at the same time!

3.1.4 How do you know if Big Picture Event Storming could help you?

[image: Photo of a corridor with many doors. There are many ways to tackle complex problems, and there is no obvious solution. Relying on the diversity of a wide-scale workshop like Big Picture Event Storming is good approach in this kind of situations.]
Photo of a corridor with many doors. There are many ways to tackle complex problems, and there is no obvious solution. Relying on the diversity of a wide-scale workshop like Big Picture Event Storming is good approach in this kind of situations.

When you face an architecture challenge, check whether the following statements are true:

	Does there seem to be no evident architecture?

	Do the people have the skills to tackle the challenge?

	Does is look like your progress has stalled despite all your efforts?

If all these are true, try Big Picture Event Storming! This book is your guide.

3.2 How to prepare a Big Picture Event Storming workshop

ℹ️ In this chapter: Event Storming is an excellent way to draft a shared architecture from a functional point of view. Here are 5 essential preparation tips to turn your first workshop into a success!

[image: A drawing of a building looking like the 3 Ds of Domain-Driven Design and functional architecture, built on foundations written Big Picture Event Storming. (Note: Indeed, Event Storming emerged from the DDD community. Yet, be reassured! We are not expecting you to know anything about DDD to read this book.)]
A drawing of a building looking like the 3 Ds of Domain-Driven Design and functional architecture, built on foundations written Big Picture Event Storming. (Note: Indeed, Event Storming emerged from the DDD community. Yet, be reassured! We are not expecting you to know anything about DDD to read this book.)

3.2.1 Homework first!

You’ve decided that Big Picture Event Storming is the way to go, and you’re eager to start one. Not so quick, though! As with many things, lack of preparation can turn your promising workshop into a total failure.

Before anything, preparation is the key to success. (Wikiquotes) Alexander Graham Bell

There are five key elements to prepare an Event Storming:

	Active Sponsorship

	A Clear Scope

	The Right Audience

	An Enticing Invitation

	An Effective Briefing

Let’s go through each of these in detail.

[image: A photo of study books and pencil. Like anything, Big Picture Event Storming requires some preparation to be a success]
A photo of study books and pencil. Like anything, Big Picture Event Storming requires some preparation to be a success

3.2.2 Active Sponsorship

At this point, the most important thing to do is to find good sponsorship. By “good sponsorship”, we mean having support from influential people. What you want is your workshop to stop being your initiative and to become the group’s initiative. Getting backup from the influencers will dramatically increase your chances of success.

Usually, private chats with these people are the best way to win them over. In the end, you want them to share and support a common goal for the Event Storming session. One of the first sessions we ran didn’t go very well because we had omitted this step. Some people wanted to draft a target architecture to know how to refactor in the long term. Others wanted to understand the main blocking points and identify the first wins. As a consequence, the session was disappointing. ☹

3.2.3 A clear Scope

With a clear goal in mind, you should have a rough idea of the scope of the session. Event Storming is an exploratory activity. People who are not used to it will feel a bit lost at first. We found that it’s better to boot the workshop around 1 or 2 uses cases makes people more comfortable. So, chat with your sponsors or other domain experts to agree about these use cases before the session.

As we said, Event Storming is exploratory by nature. Discussions about these use cases will bring in other concerns during the session. It will be up to the group to decide whether to add them to the scope or not. It’s ok to start with clear and specific use cases; there’s no need to be afraid to miss things out.

It’s also a good idea to identify a first domain event. It will both serve as an example and a way to trigger the Event Storming. From experience, this event should be somewhere in the middle of the story. It should also be clear enough for everybody to understand. Examples:

	“A trade was booked”

	“An order was paid”

	“Checked out from room”

Don’t worry if you wonder what a domain event is; we’ll get into the details later.

3.2.4 The Right Audience

It’s time to list the ideal audience. As a rule of thumb, we found that sessions work better with a mix of 50% of domain experts and 50% of technical people.

With too few domain experts in the room, the workshop becomes a one-way teaching lesson. Ideally, you’d have experts for all the functional aspects you foresee in the scope of the workshop.

We also need to have a fair share of technical people in the workshop. In the end, it’s their domain knowledge we want to grow. Don’t forget that, as Alberto Brandolini says:

It’s developers (mis)understanding, not expert knowledge that gets released in production

[image: A photo of Alberto Brandolini during a conference, with a slide “It’s developers (mis)understanding, not expert knowledge that gets released in production”]
A photo of Alberto Brandolini during a conference, with a slide “It’s developers (mis)understanding, not expert knowledge that gets released in production”

Original Tweet from Mariusz Gil

Try to maximize the diversity of technical roles to create buy-in. One of the critical advantages of Event Storming is that it scales to a large audience. If possible, send a call for volunteers among teams to make sure everyone feels welcome. This will increase buy-in even further.

📝 Assign roles to domain experts

Running an Event Storming workshop is more challenging for business-to-business “off-the-shelf” vendors. Getting actual end-users or client domain experts to attend is almost impossible.

The trick is role-playing by assigning business roles to in-house domain experts. Don’t hesitate to have various roles for the different end-users. This way, all aspects of the business will be focused on. For example, if you were designing Airbnb, you could assign a ‘renter’ role to a domain expert who understands these users’ needs.

💡 If you cannot have real users in the Room, assign business roles to your domain experts.

Get help from your stakeholders; preparing the roles beforehand should be very easy.

[image: Photo of a street actor. Role playing is a great way to make up for missing domain experts in DDD Event Storming]
Photo of a street actor. Role playing is a great way to make up for missing domain experts in DDD Event Storming

3.2.5 An Enticing Invitation

By now, you should have sponsors, a clear goal, a few starting use cases, and the ideal audience. The next thing to do is to send enticing invitations. Your organization’s culture will define the level of effort needed to get people to attend. Maybe a simple email will be enough, or perhaps you’ll need to meet everyone in person to have them present.

Make sure that the sponsorship is visible in the invitation to maximize buy-in. For example, ask an influential sponsor to send the invite for you.

If you can, sketch a visual invitation. This will set the tone for a different kind of architecture meeting.

[image: A real visual invitation we drew for a practice session of DDD Big Picture Event Storming]
A real visual invitation we drew for a practice session of DDD Big Picture Event Storming

📝 Twice 2 hours per day is sustainable

Getting people to dedicate one or two full days to a workshop can be tricky. After four hours of Event Storming, people also get too tired to be effective.

The best schedule we found around these problems is to do two times, 2 hours per day.

	2 hours in the morning

	lunch

	2 hours in the afternoon

	repeat for as many days as needed

People will have time to rest. The breaks will also trigger their System 2 brains (background processing), and they might come back with new intelligent ideas!

3.2.6 An Effective Briefing

When you have your final list of attendees, brief them about the goal of the workshop. This helps people in many aspects:

	To understand that the goal is worth their time

	To be ready for the initial disorientation

	To get an idea of how the session will go

	To get answers to quick questions

We found that a quick 15 to 30 minutes gathering works well, but again, you might need to adapt to your organization. For example, groups that are used to written communication might prefer email, chat, or wiki. What is important is that people can ask questions and get answers.

📝 Distribute domain-specific learning material

If you work in a complex domain, there will a lot to learn for developers. Think of newcomers, for example. They will have a hard time understanding all the discussions during the workshop. Fortunately, most of these complex domains have ready-made reference learning material.

For example, derivative financial software has “The Hull.” It’s like the Bible of finance. Sharing snippets before the workshop will help people to hit the ground running.

Domain experts can play a crucial role here. Asking them to compile specific material to share before the upcoming workshop will be helpful for everyone. And as a bonus, you will get them more involved and engaged!

[image: Cover of Options, Futures and other Derivatives. Also known as ‘The Hull’, this book is ‘the bible’ of financial derivatives and a source of pre-requisite references to hand out before an Event Storming.]
Cover of Options, Futures and other Derivatives. Also known as ‘The Hull’, this book is ‘the bible’ of financial derivatives and a source of pre-requisite references to hand out before an Event Storming.

3.2.7 On good tracks!

If you follow these steps, your Event Storming session is already on good tracks! Let’s now see how to prepare the room for a successful session.

3.3 How to prepare the room for a Big Picture Event Storming

ℹ️ In this chapter: Running a Big Picture Event Storming workshop only requires standard supplies. Here is a detailed checklist.

[image: An cardboard box written ‘Event Storming’. It’s opened in an empty room in preparation of a DDD Event Storming]
An cardboard box written ‘Event Storming’. It’s opened in an empty room in preparation of a DDD Event Storming

Before we jump into the actual animation, here is the material you'll need:

	A Visual Agenda

	A long wall

	A long strip of paper

	Stickies

	Sharpies

	A Small Table

	Food

📝 What if we are remote? Obviously, this only applies to physical Event Storming workshops. The supply list will be very different for a remote Event Storming. You’ll find more details in the Remote Event Storming part.

3.3.1 A Visual Agenda

One critical thing to prepare before the session is a Visual Agenda. As we explained, participants may feel destabilized by the mass of information and ideas that emerge during an Event Storming. To help them through, before the session begins, stick the Visual Agenda on the room's walls. Participants will know when they enter that they are here for a different workshop. Also, walking them through the various steps of the Visual Agenda before they start will reassure them. It's also an excellent way to highlight the few rules of Event Storming.

[image: A Sample Visual Agenda for a full length DDD Big Picture Event Storming session]
A Sample Visual Agenda for a full length DDD Big Picture Event Storming session

You can find explanations about how to prepare a Visual Agenda in the GameStorming book or website.

[image: Cover of the Gamestorming book. This book contains a guide to create a visual agenda for your workshop. It was also one of the inspirations for the Event Storming workshop itself.]
Cover of the Gamestorming book. This book contains a guide to create a visual agenda for your workshop. It was also one of the inspirations for the Event Storming workshop itself.

You must be wondering what the steps actually are. Don't worry; we'll cover this just after. For now, here is a list of other supplies you'll need to run an Event Storming workshop.

📝 Event Storming can be a somewhat destabilizing workshop. A Visual Agenda will reassure first-time attendees.

3.3.2 Infinite Design Space

[image: A photo of a very large design board spread on the wall. There is also extra paper roll to increase the design space if needed. DDD Event Storming requires a lot of design space to let us envision anything we want.]
A photo of a very large design board spread on the wall. There is also extra paper roll to increase the design space if needed. DDD Event Storming requires a lot of design space to let us envision anything we want.

By far, the most challenging thing to find is a big enough wall to do the workshop! Alberto Brandolini, the inventor of Event Storming, recommends an 8 meters long wall. Having an 'infinite' design space has two benefits:

	Participants won't constraint their ideas, creativity, and visualization to the available space

	Participants will have enough place walk around and collaborate at will

If you have a large enough room, this should be your first choice. Alberto says that corridors can be good candidates too. My own experience with this was disappointing, though. Participants complained about other people coming and going all the time.

Once you've found a room, you'll need a large paper roll to place your stickies on. Using paper instead of the wall makes the workshop 'movable.' This way, you will be able to add more design space if you need it. You'll also be able to stick it in your workplace for a few days after the workshop if you want.

3.3.3 Stickies

[image: A stack of stickies. DDD Event Storming makes a very heavy usage of stickies. Some even say Event Storming was invented by 3M to sell more Post-Its 🤣]
A stack of stickies. DDD Event Storming makes a very heavy usage of stickies. Some even say Event Storming was invented by 3M to sell more Post-Its 🤣

Event Storming consumes a tremendous amount of sticky notes, especially orange ones, for domain events! To summarize, you'll need:

	Many orange stickies, around one stack per person

	pink stickies

	large yellow stickies

	small yellow stickies

	blue stickies

Each color has a specific meaning in the Event Storming legend. We'll see how these are used later.

3.3.4 Sharpies

[image: A box of sharpies. Sharpies markers are great for writing on Event Storming stickies because they let us write just the right amount of words.]
A box of sharpies. Sharpies markers are great for writing on Event Storming stickies because they let us write just the right amount of words.

Obviously, people will need something to write on the stickies. Sharpies or small markers are the best. They are readable from a few meters but still let you write enough words on a single sticky.

3.3.5 No Chairs

Typical meetings are boring and get people sleepy. In comparison, a successful Event Storming workshop keeps people energized and productive. Removing chairs and meeting tables in the area helps people to stay energized. However, we don't want Event Storming to become a slow torture session either! This means you'll need to schedule enough breaks.

3.3.6 A Small Table

We'll need somewhere to place our supply of stickies and sharpies. A small table will be the final addition to our setup.

3.3.7 One last thing… food!

[image: Photo of a few cookies. Food is a great addition to a DDD Event Storming. Attendees will praise you for it.]
Photo of a few cookies. Food is a great addition to a DDD Event Storming. Attendees will praise you for it.

If you can, bring some food and drinks. The workshop can be tiring; having food around sustains participants' energy longer.

📝 We beg you to bring food to avoid #DeathByEventStorming

3.3.8 Everything is ready!

By now, you should have everything ready to run your first Event Storming! Let’s walk through a typical workshop.

3.4 Step by Step Guide to run your Big Picture Event Storming

ℹ️ In this chapter: From energizing the audience to reading the story of your domain, here are all the steps that you will go through during a Big Picture Event Storming.

[image: Drawing of an Big Picture Event Storming board blended in the 3 Gamestorming steps: open, explore, and close]
Drawing of an Big Picture Event Storming board blended in the 3 Gamestorming steps: open, explore, and close

Finally, we are getting to the real thing!

Here are the 9 steps of an Event Storming

	Preparing the Room

	Energizing the audience

	Briefing and Presenting the Agenda

	Generating Domain Events

	Sorting Domain Events

	Adding Actors and External Systems

	Storytelling

	Reverse Storytelling

	Closing

3.4.1 Preparing the room

[image: Photo of the room setup before the Big Picture Event Storming session starts.]
Photo of the room setup before the Big Picture Event Storming session starts.

You want to have the room ready when participants arrive. Come to the room 30 minutes early to prepare it for the workshop. How to prepare the room for a Big Picture Event Storming has all the room preparation details. Roughly, this includes:

	Removing tables and chairs

	Sticking the design paper to the wall

	Sticking the Visual Agenda to the wall

	Laying down the rest of the material somewhere

3.4.2 Energizing the audience

[image: Photo of participants during a Collaborative Face Drawing energizer. Energizers are important to set the tone before a Big Picture Event Storming]
Photo of participants during a Collaborative Face Drawing energizer. Energizers are important to set the tone before a Big Picture Event Storming

Picture from funretrospectives.com

As we've already said, Event Storming is a different kind of architecture meeting. Our advise is to run a collective physical energizer to get people out of their habits and raise engagement. You can find many great physical energizers at funretrospectives.com. We've had success with many of them.

[image: Drawing of 2 Pomodoro timers. We found that using the Pomodoro technique is a great Event Storming tip. Doubling the times works even better : 50 minutes of work, then 10 minutes of break]
Drawing of 2 Pomodoro timers. We found that using the Pomodoro technique is a great Event Storming tip. Doubling the times works even better : 50 minutes of work, then 10 minutes of break

📝 Manage your breaks with the Pomodoro

A double Pomodoro is the most productive and sustainable schedule for Event Storming. If you are unfamiliar with the Pomodoro technique, the Wikipedia page is a short crash course. Here is a summary of the double Pomodoro:

	Workshop for 50 minutes

	Break for 5 minutes

	Repeat twice and take an extended 15-minute break

	Characteristic
	Classic Pomodoro
	Double Pomodoro

	Length
	25 minutes
	50 minutes

	Short break
	5 minutes
	5 minutes

	Long break every
	4 pomodoros
	2 pomodoros

	Long break
	15 minutes
	15 minutes

When we first tried the classic Pomodoro, we were cutting off interesting discussions all the time. In practice, 50 minutes seems to work better.

People usually overflow the break, so most Pomodoros take a full hour instead of 55 minutes. Without enough breaks, people will get tired, and the workshop will not be as productive.

3.4.3 Briefing and presenting the plan

Now is the time to present the workshop to the participants. Start with the goal, scope, and use cases. It's the right moment to explain the step participants will go through and how each step will help them to reach their end goal. Adding a visual agenda helps a lot here. It's also an excellent time to introduce some general conventions.

Your Big Picture Event Storming briefing should introduce:

	The general goal

	The scope and use cases

	What a domain event is

	What a domain definition is

	How to record questions and problems

	And a few simple rules to ensure the success of the workshop

Here is how we usually start our Big Picture Event Storming workshops

[image: Drawing of people discussing in front of an empty design Space. This is what a Big Picture Event Storming session looks like before it starts.]
Drawing of people discussing in front of an empty design Space. This is what a Big Picture Event Storming session looks like before it starts.

Introduction: why and who

Thank you for being here. I'm <your name>, and I will be your facilitator during this Event-Storming workshop. Before you start, let me share a few guidelines.

The primary outcome of this Event-Storming workshop is the shared knowledge between domain experts and developers. That is why [Name], [Name] and [Name] are here, as domain experts and [Name], [Name] and [Name], as developers.

You'll build on this shared knowledge to draft a target architecture, but it can also help you make many other complex decisions.

Now that you know who is here and what this workshop’s goal is, let’s see how it will go.

📝 State the goal of ’sharing over learning.

Typical feedback from domain experts is: “I did not learn that much.” I now systematically repeat the primary goal of Event Storming at the beginning of a workshop: “The goal is 1st knowledge sharing, 2nd learning”. You can even cite or display Alberto Brandolini’s tweet:

[image: Twitter conversation: @tpierrain asking “Yes, but here I have some big mouth people that may disengage others saying”we’re too much in here.It’s wasting”” and @ziobrando answering ““it’s developer’s understanding, not your knowledge that becomes software” I once said. Guys seemed to understand]
Twitter conversation: @tpierrain asking “Yes, but here I have some big mouth people that may disengage others saying”we’re too much in here.It’s wasting”” and @ziobrando answering ““it’s developer’s understanding, not your knowledge that becomes software” I once said. Guys seemed to understand

Scope and use cases

Today, you'll cover <your scope>. To make things more concrete, you'll explore the following use-cases <list your use cases>.

Domain Events

You will start by identifying domain events that happen during these use-cases, such as <your 1st event>. A Domain Event is simply something that happens in your system.

[image: Drawing of a Domain Event orange sticky written “A trade was booked”. Domain Events are the main building blocks of a Big Picture Event Storming]
Drawing of a Domain Event orange sticky written “A trade was booked”. Domain Events are the main building blocks of a Big Picture Event Storming

As you can see in this example, you will use orange stickies to write events using past tense. This is a grammatical trick to create meaningful events. Events are not actions of someone (not "The trader books the deal"). Even though some events will result from actions, we are not interested in actions yet.

Here are a few more points to help you understand what domain events are:

	They are not technical and should not be specific to your system's implementation

	You could read about them in domain books

	Domain experts understand them

When we use the word domain, it means the specific topic for which the system is developed. In your case, the domain is <your domain> (ex: trading book)

When identifying the events, you will be able to organize them in chronological order on this enormous piece of paper that you see on the wall.

📝 Do not talk about Domain Driven Design!

Event Storming and Event-Driven Architecture came out of the Domain Driven Design communities. DDD is one of the most powerful tools to build solid software systems. Yet… It’s also full of obscure concepts and alien jargon!

This is especially problematic when doing a Design-Level Event Storming, which goes deep into the DDD concepts. Starting with this flavor of Event Storming might be too big a step for people who don’t know DDD.

Here is what you should do instead:

	If you can, replace DDD keywords with synonyms that the participants will be more familiar with. For example, Functional area instead of Bounded Context. You can quickly mention the DDD name to DDD-savvy participants.

	If you cannot find a satisfactory synonym, slowly introduce the DDD keywords and concepts, one by one, only as needed during the workshop.

	Start with Big Picture Event Storming. It lets people get used to some DDD concepts.

	Only later dive deeper with Design-Level Event Storming

People may love it so much that you might start to do Domain Driven Design more explicitly!

Domain Definitions (aka Ubiquitous Language)

[image: Drawing of a Domain Definition yellow sticky written “Counterparty…”. The Big Picture Event Storming workshop is a great way to capture the definitions of the important words in your business domain, and to grow your Ubiquitous Language]
Drawing of a Domain Definition yellow sticky written “Counterparty…”. The Big Picture Event Storming workshop is a great way to capture the definitions of the important words in your business domain, and to grow your Ubiquitous Language

Whenever you come across or agree on a domain word that may be confusing, feel free to define it on a large yellow sticky

Writing down the domain definitions is like building your own dictionary of what the words mean in your context. It is also called the domain’s ubiquitous language. This is very useful to prevent misunderstandings between all of you by making things as explicit as possible. This, in turn, improves how you work in many different aspects (ex: when choosing what to build or even refactor). Remember: the primary outcome of this Event-Storming workshop is shared knowledge.

📝 Ask new joiners to collect definitions

Newcomers are perfect for playing this candid role! If a newcomer is in the workshop, leverage the opportunity to ask them to write down definitions.

Newcomers don’t know much about the domain or the company. They are jargon detectors! Whenever they spot a word they don’t understand, their mission is to ask knowledgeable people to help them write a definition on a sticky note. By being active, they should also learn better!

Problems

[image: Drawing of a Problem purple sticky written “A trade was booked”. Many problems and questions usually come up during a DDD Event Storming workshop]
Drawing of a Problem purple sticky written “A trade was booked”. Many problems and questions usually come up during a DDD Event Storming workshop

Likewise, you will use purple stickies to park "problems." Whenever you encounter:

	a question you cannot answer

	something that does not seem right

	or any problem you should look into

Record it on a purple sticky.

Last things to know before starting

Before we look at the detailed agenda, here are 5 crucial things that you should know:

	You must stick to domain language to keep this collaboration alive. We've seen Event Storming sessions drifting into technical discussions; this leads nowhere.

	Event Storming is a visualization technique. Make sure you capture the topic that you are discussing on a sticky. Remember that you should never be talking about something not yet displayed on the wall.

	Remember that Event Storming is a way to shrink months of Big Design Up Front into a few days! It's going to be intense, but you'll accomplish a lot in a short time.

	Event Storming might feel chaotic. It might be rocky and go in unexpected ways at times, but we will adjust. At the end of the day, though, the success mainly depends on how much you all want it!

	Finally, to keep the workshop pace sustainable, we'll take a 5-minutes break every 50 minutes.

[image: Drawing of an infographics of titled ‘The 1st rule of DDD: Do Not Talk about DDD’. It has the virtuous circle: Do DDD Instead -> Delight Domain Experts -> Increase Collaboration with Domain Experts -> Do DDD Instead -> …]
Drawing of an infographics of titled ‘The 1st rule of DDD: Do Not Talk about DDD’. It has the virtuous circle: Do DDD Instead -> Delight Domain Experts -> Increase Collaboration with Domain Experts -> Do DDD Instead -> …

By Philippe Bourgau, under CC BY-SA 4.0, high resolution image

📝 Re-narrate to help new joiners (and others) catch up

It’s a fact: some people will miss parts of the workshop. Many of us suffer from overbooked agendas. Finding 8 hours where everyone is available is not easy. Some people will miss the beginning, the end, or a part in the middle.

New joiners will have difficulty catching up when collective intelligence is already growing. A good workaround is to re-narrate whenever someone joins.

The 2 hours chunks schedule also makes this easy. Plan 10 minutes at the beginning of every chunk for this storytelling.

3.4.4 Generating Domain Events

This is when the workshop actually begins. Ask attendees to stick as many Domain Events related to the use cases as they can think of. To help them get started, be the first to place the Domain Event you prepared in the middle of the design space.

📝 Alberto Brandolini’s trick: ignite the Event Storming by sticking a prepared domain event on the design board.

At some point, you'll see that the rate of Domain Event generation will dwindle down. That's the sign that it's time to move on to the next phase. 25 minutes or so are usually enough for this first phase.

📝 What do you do if things are slow to start?

The workshop can be slow to start. Participants can get lost in the chaotic nature of Event Storming.

A typical symptom is when people discuss in small groups and don’t stick domain-events.

In this case, go to the groups to trigger action. Make sure they understand the instructions. Kindly ask them to stick events as soon as possible. You might even add a bit of pressure by explaining that we’ll be doing a first event review in 10 minutes.

📝 How can you avoid being just-a-painful-facilitator when stickies are poorly written?

Here’s a tip from Alberto Brandolini. Stickies, in particular domain events, are often of poor quality initially. People need a bit of time to distinguish an event from a command.

Harassing them to rewrite their stickies won’t work!

Here is the trick: whenever you notice a low-quality sticky, flip it 45°. When people ask why it is flipped, repeat event-writing best practices and ask someone to rewrite the faulty domain-event sticky. With time, people will learn how to write good domain events, and the quality of what’s on the board will improve.

3.4.5 Sorting Domain Events

This is when Event Storming really starts. Simply ask participants to sort the events chronologically.

The goal is to represent the workflow on the design board. During the previous generation phase, people worked alone to write any event they could think of. This is going to change! They'll now need to speak to each other to sort the events.

This is where Event Storming does its magic. Likely, attendees have different points of view about the system. They materialized these with event stickies on the design board. Next, they will need to sort out their various points of view to order the events.

📝 Event Storming does its magic when people try to sort all the events.

This phase should trigger intense discussions. Take the opportunity to nudge participants into capturing domain definitions and problems to look into. For example:

	If someone wrote an event "Artifact created" ask what an artifact is. Either they'll find a better word, or they'll write a definition for what an artifact is

	As a facilitator, don't hesitate to ask the dumb question no one dares to. If an event is written "Calculation result sent" ask "What calculation? And what result?"

The idea is to make everything that is implicit explit!

[image: Drawing of a Big Picture Event Storming board with vertical and horizontal flow patterns. Vertical alignment models branching, while horizontal alignment models concurrent flows.]
Drawing of a Big Picture Event Storming board with vertical and horizontal flow patterns. Vertical alignment models branching, while horizontal alignment models concurrent flows.

As they'll arrange the stickies in chronological, participants will identify alternate flows, or things that can happen concurrently. Invite them to use swimlanes or vertical alignment to represent these situations.

📝 How do you represent Event Loops in the design?

Any real-life domain contains some feedback loops. Drawing arrows on the design board won’t work as it prevents us from moving the stickies around later. Instead, you can model loops with duplicate stickies:

	A classic event sticky to where the event happens (usually to the right)

	A duplicate sticky with an arrow where the event feeds back into the system (usually to the left)

[image: Drawing of a loop sticky for DDD Event Storming. Duplicating event stickies with an extra arrow to model loops in the domain flow.]
Drawing of a loop sticky for DDD Event Storming. Duplicating event stickies with an extra arrow to model loops in the domain flow.

3.4.6 Adding Actors and External Systems

You should start to see the story of your system emerge. All good stories have heroes, though! This time, ask attendees to identify actors (people with a role) and external systems (ex: an online API) that trigger or respond to events.

[image: Drawing of an actor sticky for Big Picture Event Storming. It’s a small yellow sticky with the role written on and a stick figure drawn on.]
Drawing of an actor sticky for Big Picture Event Storming. It’s a small yellow sticky with the role written on and a stick figure drawn on.

Nothing would happen if no human interacted with the system. The convention is to use small yellow stickies for actors. There is no need to add an actor to every event; sticking one at the beginning of a chain of events is enough.

[image: Drawing of an external-system sticky for Big Picture Event Storming. It’s a blue sticky with the external system’s name written on.]
Drawing of an external-system sticky for Big Picture Event Storming. It’s a blue sticky with the external system’s name written on.

Similarly, your system also interacts with external systems. The convention is to use blue stickies for external systems. Just stick them where the events interact with the external systems.

[image: Drawing of a Big Picture Event Storming board with a running race finish line.]
Drawing of a Big Picture Event Storming board with a running race finish line.

You're getting close to the end! All the attendees should now have a good grasp of the big picture of the domain. So let's test this understanding a bit.

📝 What to do if there is a single discussion bottleneck?

Sometimes, all participants become the audience to a central dialog.

It’s often because a unique person knows some crucial information. In this case, you have no choice but to wait.

Sometimes, though, it happens for no reason. Intervene and split the group into two groups to work on two halves of the board. This implies merging and synchronizing at the end, but it’s a small price to pay to keep everyone engaged.

3.4.7 Storytelling

It's time to check that the whole picture makes sense. Since the beginning of humanity, stories have been the vehicle of knowledge. Knowledge used to go from generation to generation through campfire stories. As a result, our brains are hard-wired to listen, remember and make sense of stories.

[image: Made up image of a giant open book in the middle of the countryside. Storytelling is key to successful Big Picture Event Storming]
Made up image of a giant open book in the middle of the countryside. Storytelling is key to successful Big Picture Event Storming

Ask for volunteers from the audience. The first volunteer is to narrate the story of the system by going through the events chronologically, explaining what is happening.

As the narrator speaks, the audience will raise questions and notice incoherencies. This is yet another opportunity to add, remove or replace events to improve the story. More definitions might emerge too. If a problem seems too big to fix during the session, park it with a pink "problem" sticky.

Narrating the story can be tiring, so ask a new narrator to take over at some point.

📝 Playing the silliest person in the room

One of Alberto’s tips is to play the silliest person in the room! It turns out it’s more complicated than it seems!

Playing the silliest person means asking candid questions. The goal is to ask questions others might be too shy to ask, encouraging a more open and inclusive discussion. You’ll have to follow the workshop’s content to ask these questions. Following the content at the same time as facilitating is tricky. If you’re a beginning facilitator, ask someone else to play the silliest person in the room 😉.

📝 Use the breaks to adapt your facilitation

Breaks are crucial for the Event Storming to go well. People will need them to maintain enough energy, but we can also use them for facilitation. With the Double-Pomodoro technique, you should take a break every 50 minutes.

After the narrative storytelling, the agenda of an Event Storming is very flexible. As facilitators, breaks are the best opportunity to decide what to do next. Take this time to think about how the workshop is going. Discuss with some participants, get their feelings, and adapt the agenda.

You can skip some activities to leave more time for others. Or you can decide to dive into a Design-Level Event Storming on a particular subdomain. There is an infinity of options depending on your challenge.

3.4.8 Reverse storytelling

Reverse storytelling is an optional phase that is great at drilling down deeper in the domain. Get a few more volunteers and ask them to tell the story from the end. The idea is to repeatedly ask: "What might have triggered this event?". This will generate or update events, actors, or external systems.

This question triggers the creative parts of our brains, leading the participants to imagine many new possibilities. This phase is very productive and brings many insights.

[image: Drawing of a flip-chart titled ‘Decisions’ where we stick post-its for decisions made during the Event Storming.]
Drawing of a flip-chart titled ‘Decisions’ where we stick post-its for decisions made during the Event Storming.

📝 How do you make decisions explicit?

A significant strength of Event Storming is that you will make many decisions during the workshop. Given the large audience, some people will ‘miss’ some decisions. It’s also a good idea to keep track of these decisions to avoid forgetting them.

We tried using special sticky notes to track decisions but to no avail. In the end, Alberto shared his trick.

The simplest and most effective thing is to keep a flip chart close to the design board and record decisions there. At the end of the workshop:

	Take a photo of the board

	Save it somewhere

	and share it with a broader audience

3.4.9 Closing

[image: Photo of a man walking on a path in the mountain, taken from behind. The Big Picture Event Storming opens up a lot of opportunities and is just the beginning of the path.]
Photo of a man walking on a path in the mountain, taken from behind. The Big Picture Event Storming opens up a lot of opportunities and is just the beginning of the path.

You've reached the first milestone of the Big Picture Event Storming! It's time to settle down and assess the outcomes:

	Participants have built shared understanding of the domain. This will save a tremendous amount of time by improving collaboration. In addition, it will avoid specification bugs and lead to better design.

	Participants have identified problems. Fixing these problems often results in quick wins with high payoffs.

	Participants wrote down the first definitions of their Ubiquitous Language. They will leverage it to speed up onboarding and maintain the system's integrity.

[image: Photo of a panel written ‘Please, do not cross this barrier’. Similarly, there is a fine line between Rough Design Up Front and pushing Event Storming too far to do Big Design Up Front.]
Photo of a panel written ‘Please, do not cross this barrier’. Similarly, there is a fine line between Rough Design Up Front and pushing Event Storming too far to do Big Design Up Front.

📝 Stop the workshop before you reach a big-upfront design!

Event Storming is a design activity. Like any design activity, we can push it too far. You can always add more refinement to your design. You could spend weeks doing detailed Design-Level Event Storming and filling Bounded Context Canvas for all your subdomains.

By doing this, you would return to the usual Big Design Up Front: spending time and energy on design activities instead of learning more by building something and adapting. Event Storming is not another way to do Big Design Up Front. Event Storming shines to create a Rough Design Up Front.

You will have better results by timeboxing the workshop and following the walking skeleton approach:

	Set a timebox for the workshop—never more than two full days! Big Picture Event Storming often takes one day, and you can run follow-up activities on the second day.

	Draft just enough to get started

	Build something

	Learn from it

	Repeat

3.4.10 What’s next?

So here is what you should do at this point:

	If participants have discovered a high return on investment problem to fix, that's what they should do right away. In his book, Alberto Brandolini recalls such a situation. The "Big Boss," who was in the workshop, asked everyone to stop what they were doing until they had fixed a major problem that they had just uncovered!

	But, most importantly, you should leverage the collective intelligence to continue the workshop further. For example to draft a target architecture from a functional point of view, to organize teams, to decide to rewrite or refactor, etc. We'll explain how to do this in the following chapters.

	Also, participants can continue to grow the ubiquitous language by adding and refining definitions

	Whatever you decide, don't end the workshop without an agreement and someone responsible for the next steps, though.

Don't forget to ask for feedback on the session before people leave. A ROTI is a quick way to do this.

📝 How do you make sure to always leave with actions?

Here is one thing you don’t want:

	Run your Event Storming,

	Build some shared understanding…

	…and do nothing with it!

It’s crucial to leave the Event Storming with actions.

During the workshop, you used pink stickies to capture subjects you could not solve on the spot. These might be questions, quick fixes, or problems.

Before closing the session, take 30 minutes to agree on the next steps. A good way is to go through all these pink stickies. There might be homework for a follow-up workshop, tickets to add to the team’s backlog, or experiments to run. Make sure these items are actionable tasks with an accountable person for each.

3.4.11 Doors open!

That's it! In a few hours, you've used Big Picture Event Storming to harness collective intelligence. The massive sharing of knowledge is the foundational step for making complex decisions in minutes instead of weeks!

You now know everything to start a Big Picture Event Storming. So don't wait for more and start preparing for your first workshop!

Let’s see how to continue the Big Picture Event Storming to draft a functional architecture!

[image: Raised hands. Use the ROTI method to quickly gather how attendees would like the Event Storming workshop to continue]
Raised hands. Use the ROTI method to quickly gather how attendees would like the Event Storming workshop to continue

📝 Use regular ROTIs to adapt the agenda

With the large audience of an Event Storming, it’s easy to lose track of how things are going for everyone. A quick ROTI (Return On Time Invested) check every 2 hours does wonders. It consists of 2 questions:

	Out of 5, what was the return on time invested (0: total waste of time, 5: could not be better invested)?

	What would you have needed to get to 5?

It’s straightforward if you follow the 2 hours chunks. You only need to take 5 minutes before long breaks to get their feedback about the session. Use this feedback to decide what aspect of the problem to work on next.

3.5 Improve collaboration with a Functional Architecture vision draft

ℹ️ In this chapter: Lacking a shared functional architecture vision results in miscommunication and conflicting-work wastes. Here is how to quickly draft this architecture on the Event-Storming board.

[image: A drawing of a Big Picture Event Storming design board displayed as a land map, with flags pined in the different bounded contexts]
A drawing of a Big Picture Event Storming design board displayed as a land map, with flags pined in the different bounded contexts

In the ancient myth of the Tower of Babel, God punished humans for their pride by making them all speak different languages. As they couldn't understand each other anymore, humans gave up building the tower, and it was never built.

Did you ever think that people you work with all speak different languages? Are people pulling in different directions? Do you witness misalignment between the technical concepts mentioned by developers and domain concepts mentioned by domain experts? Do changes require an ever-increasing number of people to get involved? Do you suffer from miscommunication delays?

If the answer is yes, you and your team might be lacking alignment on a shared functional architecture vision! A shared architecture vision is a key to a sustainable, effective, and evolutionary design.

We explained how to run a Big Picture Event Storming in the previous chapters. Drafting an architecture vision is one of the most valuable and quick outcomes of a Big Picture Event Storming. A shared functional architecture vision is a way to identify boundaries within your Tower of Babel. Within these boundaries, domain and technical experts will use the same language. Overall, translation between languages will be rarer and more explicit.

We'll cover the topic in 4 steps:

	A Step by step way to draft a functional architecture vision

	What does a functional architecture vision draft look like?

	Why it's easier with a Big Picture Event Storming

	5 reasons why a functional architecture will improve collaboration

3.5.1 Step by step way to draft a functional architecture vision

Here is what the design board should look like if you started the Big Picture Event Storming:

[image: A picture of a Big Picture Event Storming board where domain events have gathered in clumps]
A picture of a Big Picture Event Storming board where domain events have gathered in clumps

This is where Event Storming is magic! As you can see, Domain Events and other stickies gather together in groups. Think of them as "proto functional area." (Note: The Domain-Driven Design community, from which the Event Storming workshop emerged, calls functional areas "Bounded Contexts." To stick to the known terminology, we'll use the term "Bounded Context.")

📝 Bounded Contexts are the most essential part of Domain-Driven Design. Keeping the different bounded contexts decoupled makes large systems simpler.

Starting from this design board, here are 6 steps to explicit the bounded contexts:

	Find a volunteer.

	Put the following in your pockets:

	Some colored and thick wool string

	Some scissors

	Some adhesive tape

	Ask the volunteer to walk the board from left to right and suggest the bounded contexts on the board.

	For every suggestion, a discussion should follow. In the end, the participants need to agree on the bounded context boundaries. Shared domain understanding usually makes this agreement fast.

	Once an agreement is reached, use the wool string, scissors, and adhesive tape to delimit the bounded context on the design board.

	Now that the bounded context is visible on the board, you can ask the audience for a bounded context name. Yet, naming is hard, so here is a tip: words ending with "ing" often make good names (ex: accounting, ordering). But, again, stick to terms that you would find in a book about the domain.

📝 Wool, scissors, and adhesive tape are all you need to draw bounded contexts on an Event Storming design board.

As you go through these steps, you might stumble upon a few domain definitions. So keep your definition stickies at hand and be ready to capture this new vocabulary.

One last word, be ready to go back and forth between these 6 steps as you progress.

3.5.2 What does a functional architecture vision draft look like?

An architecture vision draft is simply a map of the domain's bounded contexts.

[image: A sample map of Bounded Context (aka Context Map).]
A sample map of Bounded Context (aka Context Map).

Picture from Martin Fowler’s website

So before closing the workshop, take a few minutes to capture the map on a sheet of paper. It might really just look like a bunch of potatoes with names. Don't worry: we'll see how to decorate this map in future chapters.

[image: Quick sketch of a functional architecture made of potatoes looking shapes. Once bounded contexts have been identified on the board, it’s easy to draw them on a sheet or paper and to add lines or overlaps on obvious communication borders. Such a drawing is a quick and easy way to share what was done during the Event Storming.]
Quick sketch of a functional architecture made of potatoes looking shapes. Once bounded contexts have been identified on the board, it’s easy to draw them on a sheet or paper and to add lines or overlaps on obvious communication borders. Such a drawing is a quick and easy way to share what was done during the Event Storming.

3.5.3 Why it's easier with a Big Picture Event Storming

Continuing your Big Picture Event Storming with drafting your target architecture is very easy for two reasons:

	Event Storming creates enough shared knowledge to feed the design brainstorming

	We can draw the target architecture vision on the Event Storming design board

So, just add an architecture drafting step to the Big Picture Event Storming agenda we presented before.

3.5.4 Five reasons why a functional architecture will improve collaboration

3.5.4.1 Specific vocabulary within each Bounded-Context

As you discover your bounded contexts, you'll find that each has its own vocabulary! The nice thing about this is that every word has a precise definition inside a bounded context. So when people discuss concepts that are inside a bounded context, they can rely on this vocabulary to avoid a lot of misunderstanding.

[image: Photo of a dictionary page. Drafting the functional architecture will help you to aggregate bounded context specfic dictionaries that will improve communication.]
Photo of a dictionary page. Drafting the functional architecture will help you to aggregate bounded context specfic dictionaries that will improve communication.

You can even decide to document a 'dictionary' of the words in each bounded context. This is of tremendous help for new joiners. But it's also an occasion to make your ubiquitous language (as this is called by the Domain-Driven Design community) more explicit.

3.5.4.2 Contexts make good candidates for teams

Bounded contexts follow the natural domain boundaries of your system. By mapping teams to bounded contexts, teams will have more effective internal communication and less need to synchronize with other teams.

3.5.4.3 Contexts make good candidates for services

The same goes for services! Because domain concepts are very stable through time, APIs of services built on top of Bounded Contexts will change less often, resulting in simpler versioning.

3.5.4.4 More effective exchanges

[image: Photo of a group of people sitting around a table and collaborating around large sheets of paper. A lot of domain knowledge will be exchanged during the Event Storming and architecture draft, this will help collaboration further down the road.]
Photo of a group of people sitting around a table and collaborating around large sheets of paper. A lot of domain knowledge will be exchanged during the Event Storming and architecture draft, this will help collaboration further down the road.

Everyone collaborated and contributed to drawing the map of bounded contexts. As a result, everyone will leave the workshop with the foundational knowledge to have deeper and faster exchanges.

For example, developers will understand faster and better what domain experts need. This will save both time and bugs.

3.5.4.5 Vision for how to split the code and evolve the architecture

[image: Photo of a large rock that is split in two. The shared vision of the map of Bounded Contexts lets all developers nudge the code in this direction whenever they have the occasion.]
Photo of a large rock that is split in two. The shared vision of the map of Bounded Contexts lets all developers nudge the code in this direction whenever they have the occasion.

Developers are constantly changing the system design and architecture. If they disagree on the ideal architecture, they will keep nudging the system into contradictory directions. However, once all developers share the same vision, they will evolve the code coherently. This means less time will be wasted in '2 steps forward and 1 step backward…' refactoring.

3.5.4.6 Improved communication through the code

Any fool can write code that a computer can understand. Good programmers write code that humans can understand. - Martin Fowler

Code is the programmers’s prime medium for communication. Whether code is easy or difficult to understand has tremendous impact on the performance of a development team. The shared understanding that developers get by drafting a functional architecture also translates in the code:

	better names for variables and classes

	better organization of the code into modules

	more realistic and self-documenting automated test

The more the code maps to the ubiquitous language, the more fluid and effective the conversation with domain experts will be… for years!

Even if these gains are difficult to quantify, they should not be overlooked. They are often low-hanging fruits, especially when dealing with legacy systems, where it is difficult to know how to start to improve the situation.

3.5.5 What about YOUR team's architecture vision?

If you face the Tower of Babel challenge in your team, we strongly suggest you run a Big Picture Event Storming as soon as possible! The gains will last for the whole life of your product!

3.6 Decide to Build or Buy with Big Picture Event Storming

ℹ️ In this chapter: Using the bounded contexts identified during the Big Picture Event Storming, discover how to make high return on investment decisions, like stopping to build what you should buy!

In the previous chapter, we explained how to draw the boundaries of bounded contexts. Not all bounded contexts are equal, though. Some have tremendous value for you, whereas others only need to exist. Pareto’s Principle, also known as the 80/20 rule, goes like that:

Roughly 80% of the effects come from 20% of the causes. Wikipedia

It applies well to bounded contexts. A small part of your code base will generate most of its value. Thanks to Big Picture Event Storming, you will identify where to focus and what software to buy or build.

[image: Drawing of a hammer next to a gold nugget between rocks. Using Event Storming and DDD is a good way to extract and highlight your core bounded contexts within your system]
Drawing of a hammer next to a gold nugget between rocks. Using Event Storming and DDD is a good way to extract and highlight your core bounded contexts within your system

Here are a few examples:

	We ran an Event Storming with a team in Dublin some years ago. A few days later, team members decided to descope a large refactoring that was not tackling their core. This kind of decision pays back the whole workshop many times.

	Another team we’ve worked with decided to replace a feature they were building themselves with a 3rd party. They had discovered it was “Generic.” This would allow them to re-focus on other core bounded contexts of their system.

📝 Use Event Storming to identify generic parts of your system. Then save time and maintenance by replacing them with third parties.

We’ll present this topic in 3 steps:

	3 flavors of Bounded Contexts

	How to facilitate an activity to classify the bounded contexts

	The outcomes

3.6.1 Three flavors of Bounded Contexts

As a reminder, Bounded Context is the Domain Driven Design name for a functional area. Also, in systems built with DDD in mind, it should be a bounded part of the codebase.

There are 3 types of bounded contexts. Categorizing a bounded context is key to answering the “Buy or Build Software” question.

[image: A poster that explains to the Event Storming attendees the DDD concepts of Core, Supportive and Generic bounded contexts]
A poster that explains to the Event Storming attendees the DDD concepts of Core, Supportive and Generic bounded contexts

3.6.1.1 Core contexts

Core contexts are your most important assets. These are the bounded contexts that make your competitive advantage. They are so crucial to your business and complex that you must build these yourself. Therefore, you must find ways to focus on them as much as possible.

To focus on core contexts, you’ll need to do as little as possible of the rest.

3.6.1.2 Generic contexts

These are bounded contexts that have no specificities to your business. They are reusable across many industries. It’s not a good time investment to build your own version. Instead, it would be best if you reused or bought an existing third party to provide this in your system.

3.6.1.3 Supportive contexts

Supportive contexts are the rest. Too specific to buy but not differentiating enough to build any competitive advantage. Here are typical supportive bounded contexts:

	Custom libraries that are reused across many core domains. Technical in-house frameworks are a good example.

	Features are so fundamental in your industry that everyone takes them for granted. Configuration or administration can fall here.

It’s usually impossible to reuse existing code for your supportive contexts. Yet you don’t want to focus on them either! Here are some strategies experts recommend for supportive contexts:

	Outsource them

	Leave them to less experienced programmers

	Or apply looser quality rules in this code

	At the same time, you don’t want them to turn into maintenance monsters!

If you want to learn more about these 3 kinds of bounded contexts, check out this post by Jonathan Olivier.

3.6.2 Collectively classifying your bounded contexts.

As we mentioned above, core contexts are both complex and business-critical. Technical people will know what is complex, and product people will understand what is business-critical. They need to work together for a good classification of bounded contexts.

This activity starts after all the Big Picture Event Storming steps we presented before. Your design board should look something like that:

[image: The Event Storming board after identifying the bounded contexts. Boundaries are the small red strings]
The Event Storming board after identifying the bounded contexts. Boundaries are the small red strings

Let’s see how to facilitate this activity.

3.6.2.1 Introduction

Start by presenting to everyone what they will be doing.

	Give a quick introduction to the 3 kinds of bounded contexts. The concepts are simple, and people usually get them fast. A poster like the one above helps a lot.

	Also, explain that this activity aims to classify the different contexts to make better strategic decisions.

	Explain how the final decision will be made. For example, will the responsible person use the workshop to listen to everyone’s advice before making the final decision? Or will you commit to the group’s collective intelligence advice before leaving the room?

3.6.2.2 Classification

This is the phase when people will identify which contexts are core, supportive, or generic. Here are steps to facilitate this activity for maximum collaboration, alignment, and buy-in.

	The best support for this activity is the Core-Domain-Chart from the DDD crew.

[image: Drawing of the Core Domain Chart. This chart is very useful to classify bounded contexts, either individually, but also as a group.]
Drawing of the Core Domain Chart. This chart is very useful to classify bounded contexts, either individually, but also as a group.

	Hand over an individual template and a bunch of small stickies to everyone. Explain that you will have to place each bounded context on the quadrant. Give them 5 minutes to organize bounded contexts relative to each other.

	Now ask them to draw arrows starting from each bounded context to represent where they expect it to be in 1 year. (Use any time horizon that makes sense in your context). This should not take more than 5 minutes either.

	Give them 10 minutes to pair with people they don’t often work with and to merge their quadrants.

	Ask the pairs to pair again, forming groups of 4. Ask each group to merge their quadrant again. Grant them 15 minutes for that.

	Finally, get all the groups together. Explain to remain silent and that you will deal with any disagreement right after. Ask every group of 4, in turn, to add one context (with its arrow) to the central quadrant.

📝 This might read as if Event Storming is a silver bullet that will magically fix all your architecture challenges. Unfortunately no. Life is always more messy than theory, and there will be situations when you cannot decouple your Bounded Contexts as much as you would like, for example because of legacy code, or for performance constraints. The visualisation and discussions remain invaluable.

A reviewer asked “Suppose I have a critical technical component that ends up in the top of the supportive zone, isn’t it risky to outsource it or hand it over to less experienced developers?” The answer is not simple, yet, this means paying a lot for something that is not a business differentiator! If you want to learn more about this topic, read <TODO>.

3.6.2.3 Alignment

There will likely be disagreement about the contexts. Now is the moment to sort out these points. This step might take more or less time, depending on the debate.

	Once each domain has been placed on the central quadrant, give groups 5 minutes to discuss what is on the quadrant.

	If they don’t agree with something, ask them to place a red sticky explaining the problem close to the bounded context sticky.

	Use the red stickies to create topics for workgroups. For example, copy the issue on a sheet of paper and lay it on the floor to create a ‘zone’ dedicated to this issue. The goal is now to solve all these disagreements!

	Ask the people to self-organize in the zones.

	People have 10 minutes to solve all the disagreements. People are welcome to move to other groups whenever they feel they don’t learn or contribute anymore.

	Each group should update the quadrant when they reach an agreement.

	Repeat the 10 minutes until all problems are solved

At that point, you have classified all contexts as core, supportive, or generic.

If you want, you can decorate the Event Storming design board with ❤️, 🅖 and 🅢 stickies. Do you remember the context map we presented Improve collaboration with a Functional Architecture vision draft? You can also decorate this one!

[image: Zoom on a part of the Event Storming board where we can see a bounded context classified as core with a ❤️ sticky]
Zoom on a part of the Event Storming board where we can see a bounded context classified as core with a ❤️ sticky

3.6.3 The Outcomes

This simple activity can have incredible consequences. Especially for big topics like prioritization or buy vs. build software decisions. The stories we shared at the beginning of the chapter are typical examples.

A less tangible outcome is that it focuses discussions and efforts on core contexts. After the workshop, there will be less work on non-core contexts and more on core contexts. Work on core bounded contexts is more valuable. All in all, it means less and more valuable work: a more profitable and sustainable pace.

3.6.4 Never run a Big Picture Event Storming without classifying the contexts!

[image: Photo of crossroads of wooden walking path. If you get to that point in the Big Picture Event Storming, don’t miss on the occasion of doing this tremendous value activity!]
Photo of crossroads of wooden walking path. If you get to that point in the Big Picture Event Storming, don’t miss on the occasion of doing this tremendous value activity!

This activity is so valuable that it would justify all the Event Storming by itself! So, whatever the reason you are running your Event Storming, make a detour and run this two-hours activity:

	Everyone will share a sense of where they should focus their efforts

	Everyone will have had a glimpse at where the future will lead the system

	You will most likely discover a high return on investment actions like:

	Replacing in-house generic contexts by third parties

	Reducing the complexity of supportive contexts where it makes no sense

	Refactor or reorganize to make sure that core contexts can get your priority

These are typical high-value complex architecture decisions. They are usually very difficult to make. The more time we spend together in an Event-Storming workshop, the faster we can make these complex decisions, and the more actionable and valuable the outcome!

3.7 Read this before applying Big Picture Event Storming to Legacy Systems

ℹ️ In this chapter: You might be wondering how to use Event Storming with legacy systems? You’ll see that you need to forget the legacy and focus on the system's evolution instead.

[image: Drawing of an Event Storming board and Mr Legacy (Code) with the writing ‘More Event Storming Tips’ above]
Drawing of an Event Storming board and Mr Legacy (Code) with the writing ‘More Event Storming Tips’ above

We’ve only talked about greenfield products up to now. This is fine, but most of our work happens in Legacy Systems, doesn’t it?

If you read this chapter, we assume you need to refactor your legacy system toward the domain. It makes sense to leverage all the benefits of Big Picture Event Storming. Unfortunately, you might be puzzled how to start! Here are four tips to help you:

	Do NOT try to Event Storm your Legacy!

	Start with a 30-minute brief

	Adapt the schedule even more than usual!

	Make stress explicit

3.7.1 Do NOT try to Event Storm your Legacy!

It does not make sense to Event Storm what you currently have. Legacy systems were rarely built with the domain in mind. Trying to map the existing code to domain events is a recipe for frustration and failure. We once let this happen. The workshop drifted into an unproductive mapping of current technical dependencies. Don’t do that. Instead, use Event Storming to define a target vision.

📝 If you envision refactoring your legacy system, do as if you were starting from scratch.

You might think that we are sidestepping the topic. Our approach must tackle the core of the issue! Yet this tactic has plenty of benefits:

	A shared target is the first step in any change initiative. Your team will not reach a target vision if people don’t share the same destination in their heads. Don’t spare the time to agree on a shared target. We know no better way than Big Picture Event Storming to do that.

	Harness the continuous evolution of the system. Developers spend their days twisting the system in one direction or another. With a shared target, all these small changes will go in the same direction. Eventually, it will nudge the system toward the vision. (At least, it won’t pull it backward!)

	You are likely to find quick wins. Some parts of the code might be easily refactored to the target. You might realize some areas are not business-critical and should be left as-is. Here is an example: Philippe once ran an Event Storming with a startup. They realised that they had been spending quite some time improving their home-made user management library lately. They decided to stop and to look for of-the-shelve solutions!

[image: Photo of legacy factory machines. To run Event Storming to refactor your legacy system, do as if you were starting from scratch. Having the legacy in mind will parasite discussions with current problems.]
Photo of legacy factory machines. To run Event Storming to refactor your legacy system, do as if you were starting from scratch. Having the legacy in mind will parasite discussions with current problems.

On the other side, though, it is difficult for participants to “forget” the current system. Read on for tips to keep your Event Storming workshop constructive.

3.7.2 Start with a 30-minute brief

Start with a thirty-minute brief to share the current situation with everyone. This brief should cover business, domain, architecture, and target scope. For example, this brief should answer general questions like:

	What are the business incentives for looking into modernizing this legacy system?

	Are there some clear business constraints like specific customers, contractual or regulatory deadlines, or expected market evolution?

	Who are the users of this system?

	What problems are they currently facing when using this system?

	On the other side, what does the existing system do well?

	What kind of architecture is the Legacy System built on?

	What are the expected non-functional requirements that we expect from the future system?

	…

Event Storming would still work without this briefing. People would talk during the workshop and eventually share all the information. We just observed that it was more efficient to state what we already know.

Run a Celebrity Interview or a UX Fishbowl to avoid a dreadful slide presentation.

3.7.3 Adapt the schedule even more than usual!

Here is what changes when you run the workshop with existing code:

	Some areas will already be clear to everyone

	People will have contradicting views about other parts of the system

We already said it’s good practice to use breaks to adapt the schedule. When dealing with existing code, it becomes crucial! Use pauses to discuss with key people and agree on where to dig next. You can also gather feedback stickies before every break. Install a whiteboard near the exit door. Ask them to stick their answers to these questions before they leave the room:

	“What should we cover next?”

	“What part is not worth discussing more?”

Imagine that the participants identified a part of the system that is well-built and not business-critical. You can safely skip the storytelling steps for this area.

3.7.4 Make stress explicit

One of the first Big-Picture Event-Storming we did was with a team working on a legacy system. The developers wanted to do some refactoring. They needed a target architecture to guide them.

As we went through the workshop, we noticed something: stress from the developers. We had not expected this, but Alberto knew it. He mentions this in the Legacy Code Rocks podcast and calls it fear!

[image: Photo of a factory running by night. Discussing significant changes to the current live system can be stressful for developers. A good Event Storming tip is to make all the stress points explicit.]
Photo of a factory running by night. Discussing significant changes to the current live system can be stressful for developers. A good Event Storming tip is to make all the stress points explicit.

The emerging design was very different from the existing system. The more concrete our design became, the more the developers became anguished. We could almost hear them thinking:

How the heck are we going to go from here to there!?

With stress, people risk twisting the design to look like the existing system. Trying to mute this stress does not work. People will stop cooperating. The best strategy to do is to acknowledge this stress:

	First, say loud and clear that you agree with developers that free rein refactoring is stressful! So explain that we are here to make it visible and manageable.

	Repeat that you will deal with the refactoring path later in an activity or workshop. If needed, add a poster on the wall to remind everyone.

	Set up a refactoring-challenges side-board. Explain to participants, especially developers, that they can park what they foresee there. Also, regularly go over pink stickies and move refactoring topics to the sideboard. Spend time on this sideboard:

	Take time to organize the refactoring stickies

	Read through them

	Remind everyone there will be a follow-up refactoring activity.

These tips should keep developers in a positive mood.

3.7.5 More about Event Storming and Legacy Systems

This chapter is only a glimpse into the big topic of refactoring legacy code toward Domain Driven Design. Here is more follow-up content we recommend:

	Rewrite or Refactor? Decide with Event Storming.

	Course on DDD for Legacy Systems by Martin Huizendveld

	Eric Evans presents four strategies to use DDD with legacy

	Almost the same content, as a video

	Take a snapshot of your current system and find hotspots to refactor towards your vision with the Quality View Workshop

3.8 Big Picture Event Storming 3-minutes summary

ℹ️ In this chapter: Let’s take a Big Picture of the Big Picture Event Storming! Here is a summary of everything we wrote in this part, plus references to go deeper.

[image: Drawing of an Event Storming design board that morphes in 3 arrows. It represents what can be done after a Big Picture Event Storming workshop.]
Drawing of an Event Storming design board that morphes in 3 arrows. It represents what can be done after a Big Picture Event Storming workshop.

3.8.1 Why would you want to run a Big Picture Event Storming

We first discussed Why would you want to run a Big-Picture event storming? We saw that Event Storming is a middle path between Big Up-Front Design and 100% Emergent Design. When facing a software architecture challenge, evaluate the following affirmations:

	The architecture is not obvious

	The people have the skills to tackle the challenge

	Your progress has stalled despite following the usual successful methods

Event Storming is the way to go if all these affirmations are true!

3.8.2 Making the workshop successful

[image: Picture of wooden steps in the tropical forest. Tackling complexity and running a long workshop such as Event Storming can be quite daunting from the outside. Step by Step facilitation instructions will make this smooth!]
Picture of wooden steps in the tropical forest. Tackling complexity and running a long workshop such as Event Storming can be quite daunting from the outside. Step by Step facilitation instructions will make this smooth!

We then looked at how to make the event a success. Preparation and facilitation are essential to successful Event Storming.

	How to Prepare a Big-Picture Event Storming Workshop tells us what to prepare before it starts:

	Active sponsorship

	A clear scope

	The right audience

	An enticing invitation

	A briefing speech.

	How to prepare the room for a Big-Picture Event Storming lists all the supplies for the workshop:

	A visual agenda

	A wall

	A long strip of paper

	Stickies

	Sharpies

	A small table

	Food.

	What to say at the beginning of a Big-Picture Event Storming provides an example you can reuse.

	5 steps are identified in Step by Step Guide to run your Big-Picture Event Storming:

	Generating Domain Events

	Sorting them

	Adding actors and external systems

	Storytelling

	Reverse Storytelling

Effective facilitation tips to engage participants in the workshop are proposed for each step.

3.8.3 Functional Architecture

One of the main outputs of Big Picture Event Storming is to identify the Bounded Contexts (Domain Driven Design for functional areas). This Context Map (Domain Driven Design for functional architecture) is a cornerstone for optimizing technical investments and having teams collaborate effectively.

	Improve collaboration with a Functional Architecture vision draft details how to add the Context Map to the design. This post also explains how this has a tremendous impact on overall collaboration.

	Decide to Build or Buy with Big-Picture Event Storming explains that not all bounded contexts have the same value. It also presents facilitation steps to make sound technical investment decisions. For example: “Should we build or buy part X of the system?”.

3.8.4 Dealing with Legacy Code

[image: Photo of an abandonned factory, that is tagged and getting invaded by vegetation. This is a pretty vivid representation of some legacy code.]
Photo of an abandonned factory, that is tagged and getting invaded by vegetation. This is a pretty vivid representation of some legacy code.

In Read this before applying Big Picture Event Storming to Legacy Systems, we advise against Event Storming your legacy. Legacy systems usually don’t map to the domain and do not yield to the exercise. Instead, Event Storm your vision with these three tips in mind:

	A longer brief is needed to convey some extra background associated with the Legacy System

	Acknowledge and visualize developers’ stress generated by the gap between the unveiling vision and the existing legacy systems.

	You will need to adapt the schedule even more than usual as the legacy system will surprise you with unexpected challenges.

3.8.5 Further Steps

At the end of Event Storming, you have all the problems and domain knowledge fresh in everyone’s mind. It’s a unique opportunity to tackle mind-numbing complex issues. Here are some pointers for follow-up activities:

	Should you organize your teams along features or components?

	Should you rewrite or refactor a bounded context?

	How do you protect and invest in your crown jewels? Explicit the relationships between your contexts to ensure the core domain keeps priority.

	Avoid big end-of-project performance failures by early prototyping your (micro)services and Non-Functional Requirements.

	Decide what to ship early!

	Ship early while moving towards your vision by leveraging refactoring skills

[image: Photo of a woman standing at the top of a mountain, watching over a cliff at the mountains on the other side of the valley. Like this hiker, as participants reach the end of the Big Picture Event Storming, a whole new world of possibilities open to them!]
Photo of a woman standing at the top of a mountain, watching over a cliff at the mountains on the other side of the valley. Like this hiker, as participants reach the end of the Big Picture Event Storming, a whole new world of possibilities open to them!

There are also other workshops that you can run after Big Picture Event Storming:

	Discover how to collaboratively plan your software delivery to maximize its impact with Impact Mapping

	Organize your delivery with User Story Mapping

	Map your ideal team organization with Teams Topologies mapping

	Get a 360 degrees view of a bounded context with the Bounded Context Canvas

	Apply finer grain Domain-Driven Design on a core context with Design-Level Event Storming

3.8.6 Design-Level Event Storming

Here you are: you’ve drawn your context map and identified your core contexts. How do you maximize and secure your technical investment in these? It turns out that this is what Domain Driven Design was created for! Guess what: Event Storming has more to offer! Let’s see how to use Design-Level Event Storming to move one step closer to code in a core context. Read on!

4 Design Level Event Storming

4.1 Why would you do a Design Level Event Storming?

ℹ️ In this chapter: Design Level Event Storming is a workshop to design the core of your system. Let’s see what is it exactly, what are its outcomes, and where should you use it.

[image: Drawing of a DDD Event Storming board with a loop on one Bounded Context. Design Level Event Storming is about diving in the details of a core Bounded Context]
Drawing of a DDD Event Storming board with a loop on one Bounded Context. Design Level Event Storming is about diving in the details of a core Bounded Context

Let’s recap where we stand. Imagine you are starting a new product with your team. You had been struggling for a while about how to start.

	What should the high-level design be?

	What should we focus on first?

	What are the main risks?

All these questions remained unanswered until you heard about Event Storming!

You decided to try Big Picture Event Storming. As a result, you drafted a functional architecture vision in one or two (intense) days! That’s more progress than you had made in weeks. Also, you managed to identify the functional areas in your domain. Then, you have highlighted the topics you’ll focus on to create your competitive advantage. These are your core bounded contexts.

Everyone on the team now understands where to focus. So, finally, it looks like your team are ready to start!

💡 Wait, how do you get from the Big Picture Event Storming to designing and writing software?

[image: Photo of an athlete in his starting blocks. Big-Picture and Design-Level Event Storming workshop are really about making the best start possible when building systems with Domain-Driven Design (DDD)]
Photo of an athlete in his starting blocks. Big-Picture and Design-Level Event Storming workshop are really about making the best start possible when building systems with Domain-Driven Design (DDD)

Event Storming has more to offer! We can zoom in with Design-Level Event Storming. We’ll look into the following questions:

	What problems does Design Level Event Storming solve?

	What are the outcomes of Design Level Event Storming?

	How does Design Level Event Storming work?

	On which parts of your system should you run a Design Level Event Storming?

📝 Big Picture Event Storming was about exploring strategic and large-scale Domain Driven Design; Design-Level Event Storming is about small-scale DDD inside a domain. Don’t be surprised, but as you will see, the problems and outcomes are very similar, yet at a smaller scale and more fine grained.

4.1.1 What problems does Design Level Event Storming solve?

It’s a way to create a collaborative design with a whole software team to solve problems like:

	How can we make good enough design decisions in 1 day instead of months?

	How can we be sure that everybody on the team understands our target design and pulls in that direction?

	How can we leverage the perspective of everyone and not just of a few experts?

4.1.2 What are the outcomes of Design Level Event Storming?

The Design Level flavor of Event Storming lets you dive into the details of a bounded context. Its primary outcome is a good enough and shared design vision. Developers who attend the workshop should be able to start coding straight away.

During your Design Level Event Storming, you will:

	Detail the information contained in domain events

	Draft what the screens should display

	Identify potential services in your architecture (aka Aggregates in DDD Vocabulary) and what they should do

	Identify the need for interaction with external systems, which is the starting point for API design

	Pinpoint critical issues: the most pressing problems and the primary domain concept definitions.

	Get the whole team to collaborate and design together

	Align all the team towards a shared vision, which saves tremendous time as developers all nudge the code in the same direction!

	Set the team on a sustainable pace by finding the perfect balance between Big Up-Front Design and Emerging Design!

📝 A DDD Aggregate is a small-scale programming pattern that recommends creating and destroying objects as grapes with a root.

4.1.3 How does Design Level Event Storming work?

[image: Poster that explains how the different design elements of Design Level Event Storming interact with each other. “The picture that explains everything,” as defined by Alberto Brandolini.]
Poster that explains how the different design elements of Design Level Event Storming interact with each other. “The picture that explains everything,” as defined by Alberto Brandolini.

Source: Introducing Event Storming, Alberto Brandolini.

Similarly to Big Picture Event Storming, the Design Level flavor is a time compressor! It relies on intense and high-bandwidth collaboration. It follows the same dynamic as Big Picture Event Storming, though it’s a bit more detailed and technical.

4.1.4 On which parts of your system should you run a Design Level Event Storming?

Design Level Event Storming is a zoom-in, yet not all system parts require that much attention! Here are three pre-requisites to know on which parts of your system you should run a Design Level Event Storming:

	First, you identified it as business-strategic and a business differentiator.

	It’s a real functional area about which developers and non-developers can talk and understand each other. It’s not a technical brick that only developers can understand

	It contains complicated domain logic that deserves Domain Driven Design (ex: finance. If there are books written on this domain, it’s a clue!)

These checks should look familiar if you ran a Big Picture Event Storming before! This is because they correspond to your core bounded contexts. Design Level Event Storming is a natural continuation of Big Picture Event Storming.

If you haven’t run a Big Picture Event Storming before, as long as the previous checks are ok, Design Level Event Storming will work! You’ll have to start with a fast “mini big picture event storming” on your scope. That’s also a way to “redo” a quick Big Picture Event Storming to adjust as you progress.

Finally, Design Level Event Storming is particularly well suited to design microservice or Event-Sourcing systems. If you plan to architect your system with these, that’s yet another incentive to use Design Level Event Storming.

4.1.5 Conclusion

If you have identified a functional area of your system that:

	Is A key business differentiator

	Contains complicated domain logic that deserves Domain Driven Design

Then run a Design Level Event Storming with the whole team which will build it! In a few hours:

	You’ll make complex design decisions that would have taken months

	You’ll get a head-start on design

	Everybody will be moving in the same direction

Let’s see how to facilitate your first Design Level Event Storming!

4.2 How to explain Design Level Event Storming to your mother

ℹ️ In this chapter: Design Level Event Storming relies on advanced Domain Driven Design vocabulary. Here is how to make things simple for your participants.

[image: Drawing of a can of ‘Good Start’ about Design-Level Event Storming]
Drawing of a can of ‘Good Start’ about Design-Level Event Storming

I have a hard time remembering all these words like “Policies” and “Aggregates” (a participant)

Sorry, Aggregates can only receive commands. They cannot emit any! (the facilitator)

I’m sorry, I’ve lost track here. I’m kind of waiting for others to come up with something. (a participant)

Design Level Event Storming is finer grain and more technical than Big Picture. It also relies on Domain Driven Design vocabulary to model technical concepts. The DDD jargon is precise but also challenging to grasp at first!

📝 The first rule of DDD: “Don’t speak of DDD!”

How can we provide essential DDD fluency to participants as we start the workshop? In a few minutes?

4.2.1 “The picture that explains everything”

We briefly mentioned the “Picture that explains everything” in the previous chapter. Alberto Brandolini introduced this picture to explain how to organize stickies.

[image: Poster that explains how the different design elements of Design Level Event Storming interact with each other. “The picture that explains everything,” as defined by Alberto Brandolini.]
Poster that explains how the different design elements of Design Level Event Storming interact with each other. “The picture that explains everything,” as defined by Alberto Brandolini.

Source: Introducing Event Storming, Alberto Brandolini.

We find the name of this picture a bit misleading! From the puzzled looks of people, we can guarantee that this picture needs explaining!

Before you start the workshop, display the picture, and ask people what they understand. Some people might be able to explain parts of it to others. Finally, read the following explanation to ensure everybody starts from the same place.

4.2.2 A speech to present Design Level Event Storming

Alberto Brandolin, the inventor of Event Storming, calls this “The Picture That Explains Everything.” It shows how DDD event-based systems work. In addition, it features all the possible arrangements of stickies we can use in the workshop.

The goal of this Event Storming is to design our system with these arrangements.

This poster explains how Domain Events cascade during the system’s life.

A Domain Event is simply something that happens in your system.

ℹ️ Participants must understand what domain events are. Refer to What to say at the beginning of a Big Picture Event Storming for more explanations.

Let’s start from the left of the picture. Commands are sent either to external systems or to our aggregates.

A Command is an order sent to the system, often by a human, for example, when he clicks something. But it can also come from a policy, and we’ll see that later.

External Systems are any other computer systems outside your workshop’s scope.

ℹ️ Look at the Step-by-Step Guide to run your Big Picture Event Storming for more details.

Aggregates is the code you will write to handle our critical business rules. An “Aggregate” aggregates the business rules related to a particular business concept. That might sound a bit blurry, but trust me, that’s all you need to know to get started! Take it easy. You will understand Aggregates better as we go through the steps of the workshops.

Both Commands and Aggregates then raise a domain Event.

Some events will “automatically” trigger another command. We materialize this link through policies.

A Policy is an automation rule. A rule of thumb is that it follows the pattern “Whenever <domain event>, Then trigger <command>.” Policies can be implemented by code or by a human operator.

We use lilac stickies for policies, like the one at the bottom right.

Other events notify Actors.

An Actor is a human that interacts with the system.

ℹ️ You can find more details about actors in Step by Step Guide to run your Big Picture Event Storming.

Actors should be able to react to events by sending new commands. To do so, they’ll need to see the correct information. That’s the green read-model sticky.

A Read Model is simply the list of all the information to display in the User Interface.

We’ll also have to display this information in a good UI. We can mock-up this UI in the white sticky.

A UI mock-up sticky is simply a drawing of what the user would see.

This brings us to the right of the picture. It ends as it started, with a command. That’s how we can chain this picture to model the whole system.

By the end of the workshop, the board should consist of many repetitions of this pattern.

From now on, we should make everything explicit. Everything we say should appear on the board.

Leave the poster on the wall so participants can refer to it during the workshop. Adding a legend with the definitions is also a good idea.

[image: A photo of a page of a dictionary. Domain Driven Design comes with quite a lot of vocabulary, and the learning curve can be steep. In Design Level Event Storming, we can define just the bare minimum to get going.]
A photo of a page of a dictionary. Domain Driven Design comes with quite a lot of vocabulary, and the learning curve can be steep. In Design Level Event Storming, we can define just the bare minimum to get going.

📝 Whatever your issue, adding special stickies is usually a bad idea

Before getting Alberto’s advice about logging decisions, we tried using custom “decision” stickies. That did not work well. Event Storming already has an extensive color code for stickies; adding more is too much. (Note: It’s almost impossible to find a sticky color that is not already used, anyway!)

When we tried this, people would make decisions but forget to record them with stickies.

💡If you are considering adding a new kind of stickies, look for another idea!

[image: Picture of a guy in front of a wall full of sticky-notes and with a large sticky on his head too! Event Storming already has a complex sticky bestiary, adding a new one is not a good idea.]
Picture of a guy in front of a wall full of sticky-notes and with a large sticky on his head too! Event Storming already has a complex sticky bestiary, adding a new one is not a good idea.

4.2.3 You’re ready!

That’s all the definitions you need! Let’s dive in a detailed agenda for the whole Design Level Event Storming.

4.3 The Best Agenda For Design-Level Event Storming

ℹ️ In this chapter: You’ll see how to use Design-Level Event Storming to identify Aggregates, UX mockups, and other design elements. Just follow this agenda through your first facilitation!

[image: Drawing of an event storming board jigsaw with one piece left to place. This represents the final step to finishing a Design-Level Event Storming]
Drawing of an event storming board jigsaw with one piece left to place. This represents the final step to finishing a Design-Level Event Storming

So, here you are! You have identified a business-critical bounded context. (Remember, bounded contexts are just functional areas) It is the perfect occasion to use Design Level Event Storming!

Let’s see how to get started!

[image: Poster presenting the agenda of a Design-Level Event Storming. The phases are: 1 Bring in Domain Events, 2 Present the picture that explains everything, 3 Add commands, 4 Actors and policies, 5 blank Read Models and Mock Ups, 6 Fill these, 7 Add External Systems, 8 Add blank business rules, 9 fill these, 10 Merge and name Aggregates]
Poster presenting the agenda of a Design-Level Event Storming. The phases are: 1 Bring in Domain Events, 2 Present the picture that explains everything, 3 Add commands, 4 Actors and policies, 5 blank Read Models and Mock Ups, 6 Fill these, 7 Add External Systems, 8 Add blank business rules, 9 fill these, 10 Merge and name Aggregates

Big Picture is about exploring. Design-Level is about designing and building.

Here is a detailed and step-by-step agenda that you can follow to facilitate your Design Level Event Storming. You’ll see that many steps in the workshop are almost mechanical. So, follow the guide, and everything will go well!

	The target design

	Domain Events

	Commands)

	Actors and Policies

	Blank read-models and UX mock-ups

	Read models and UX mock-ups

	External Systems

	Blank Business Rules

	Business Rules

	Aggregates of Business Rules

	Aggregates Names

[image: A poster presenting ‘eTop-Games’, a self-publishing table-top games startup idea. Business model: free, pay for custom services (design, rules hardcoding…), can sell physical printouts of games. Strategy: attract players with classics, attract designers with freemium and beta players, use content marketing, start with a simple game editor (1 board, pieces, a rulebook, a video chat, social rules enforcement)]
A poster presenting ‘eTop-Games’, a self-publishing table-top games startup idea. Business model: free, pay for custom services (design, rules hardcoding…), can sell physical printouts of games. Strategy: attract players with classics, attract designers with freemium and beta players, use content marketing, start with a simple game editor (1 board, pieces, a rulebook, a video chat, social rules enforcement)

Let's take an example to illustrate how to run the workshop. Imagine you are in a software company that builds a self-publish board games website.

The website also lets people play their games online. In the examples below, we will be running the Design-Level Event Storming on this "live game" bounded context. It is one of many functional areas of the whole system.

4.3.1 The target design

[image: Poster that explains how stickies chain together on a Design-Level Event Storming board. “The picture that explains everything,” as defined by Alberto Brandolini.]
Poster that explains how stickies chain together on a Design-Level Event Storming board. “The picture that explains everything,” as defined by Alberto Brandolini.

Source: Introducing Event Storming, Alberto Brandolini.

Before you start, you’ll need to ensure that everyone understands what Design Level Event Storming is about. Refer to our previous chapter, How to explain Design Level Event Storming to your mother, for detailed instructions to present the workshop and all the vocabulary.

The workshop will make the above pattern of stickies emerge step by step.

4.3.2 Domain Events

The first thing you’ll need in a Design-Level Event Storming is domain events!

If you are running this workshop after a Big Picture Event Storming, copy the events from the part of the system you are focusing on to another blank design board. As usual, we are using orange stickies for events.

[image: Photo of “live game” sub domain events. We can see events ‘Game started’, ‘Piece moved’, ‘Invalid move detected’, ‘Ambiguous rule detected’, ‘Feedback on rule sent’, ‘Game ended’]
Photo of “live game” sub domain events. We can see events ‘Game started’, ‘Piece moved’, ‘Invalid move detected’, ‘Ambiguous rule detected’, ‘Feedback on rule sent’, ‘Game ended’

If starting from scratch, you will still need to generate events. You can run the first steps of the Big Picture Event Storming on your limited scope:

	Events Generation

	Events Sorting

	Actors and External Systems

	Storytelling

Check A detailed agenda of Event Storming to learn how to run these steps in detail.

4.3.3 Commands

The next step is to prefix every domain event with a blue command sticky. This step is straightforward: if you have an event called “Game Started”, prefix it with the command “Start Game”. Sometimes, the command names are a bit different, but you should manage to figure this out.

[image: Photo of the ‘Start Game’ command blue sticky, stuck just to the left of the ‘Game Started’ domain event]
Photo of the ‘Start Game’ command blue sticky, stuck just to the left of the ‘Game Started’ domain event

4.3.4 Actors or policies

Commands can either be sent by a human (an actor) or automatically by a policy.

Go through all the commands and prefix them with an actor or a policy.

If you have been through a Big Picture Event Storming, you should have identified the actors, so copy them.

[image: Photo of the ‘Moderator’ actor small and pale sticky, stuck just to the left of the ‘Start Game’ command]
Photo of the ‘Moderator’ actor small and pale sticky, stuck just to the left of the ‘Start Game’ command

Actors should have a title, and policies should follow the form “Whenever Event X, then Command Y.”

[image: Photo of a policy ‘Whenever a piece is moved, backup game’ on a lilac sticky between the ‘Piece moved’ domain event and the ‘Backup Game’ command]
Photo of a policy ‘Whenever a piece is moved, backup game’ on a lilac sticky between the ‘Piece moved’ domain event and the ‘Backup Game’ command

(Note: Policies are sometimes manually automated: a human does it. In this case, it’s simpler to keep modeling this as a policy rather than introducing a ‘dumb’ actor)

4.3.5 Blank stickies for what the actors will see

Actors need information before they can send a command. So, again, we’ll use stickies for that!

Again, this step is a mechanic: add blank green and white stickies between domain events and actors!

[image: Photo of blank Read-Model green sticky and blank UI Mock-up white sticky at the right of the ‘Ambiguous Rule Detected’ domain event]
Photo of blank Read-Model green sticky and blank UI Mock-up white sticky at the right of the ‘Ambiguous Rule Detected’ domain event

📝 What does “Make the Design Space Infinite” mean in practice?

💡You need even more infinite design space for Design-Level Event Storming! 😉

Stickies are great because we can move them around many times. During Design-Level Event Storming, participants often insert new stickies between existing ones. They’ll need a bit more design space every time they do this, and that’s when ‘Infinite Design Space’ takes all its meaning. Another situation is if stickies start to be aligned vertically rather than horizontally. Remember that Shared understanding relies on common metaphors.

As the facilitator, you need to be proactive:

	Pause the workshop

	Explain the need for more space

	Add more design space by claiming more of the wall (left, right, or even above or below)

	Move the stickies to keep the design clear. It’s quick if you ask everyone to contribute.

[image: A photo of Toy Story’s Buzz Lightyear]
A photo of Toy Story’s Buzz Lightyear

To Infinity and Beyond! By Michele M. F., under Attribution-ShareAlike 2.0 Generic (CC BY-SA 2.0), original on Flickr

4.3.6 Read models and UX mock-ups

Let’s list the information the actors need to send their commands.

📝 Design-Level Event Storming is the perfect workshop to discuss the UX of domain events

	First, write down the data you want to display on the green sticky. This is a Read-Model.

	Second, on the white sticky, sketch the user interface that will display the data on the screen. This is a UX mock-up.

[image: Photo of a Read-Model containing {Rule text, Highlighted section and Comments} and a UI Mock-up sketch at the right of the ‘Ambiguous Rule Detected’ domain event, between the ‘Ambiguous Rule Detected’ domain event to the left and the ‘Send feedback on rule’ command to the right]
Photo of a Read-Model containing {Rule text, Highlighted section and Comments} and a UI Mock-up sketch at the right of the ‘Ambiguous Rule Detected’ domain event, between the ‘Ambiguous Rule Detected’ domain event to the left and the ‘Send feedback on rule’ command to the right

📝 Optimize the time of Domain and UX experts

Some steps of Design Level Event Storming are pretty straightforward, almost mechanic, they are mere pre-requisite to the critical steps: business rules and UX exploration.

These mechanic steps don’t need the experts. Also, we don’t want to waste their time. The simplest thing to do is get through these steps as quickly as possible. Explain what to do and ask everyone to take part. Don’t hesitate to timebox to one minute to get everybody to participate!

Finally, exploring the UX of all screens and Business Rules takes some time. If the group waits for two specific people to discuss all the topics, the workshop will take ages! This is the case of a single discussion bottleneck, and you need to split the group. Event Storming makes it easy to work in parallel! UX experts can work on UX while domain experts discuss business rules. With enough experts, you might have many groups working on UX or business rules simultaneously!

4.3.7 External systems

You’ve been looking at what happens ‘after’ a domain event. Let’s dive into what happens between a command and an Event.

The “picture that explains everything” shows that external systems also raise domain events.

If you have done a Big Picture Event Storming before, you should have spotted a few external systems. Copy them to pink stickies and stick them between Commands and Events.

If you haven’t gone through a Big Picture Event Storming before, go through all commands and add pink stickies for external systems where it makes sense.

In the scope of a bounded context, other contexts become external systems too! Go through all the remaining commands. Add a pink sticky between the command and the event when they involve another context. Write the name of the other context on the pink sticky.

[image: Photo of the ‘Game Backup Subdomain’ external system pink sticky between the ‘Backup game’ command to the left and the ‘Game backed up’ domain event to the right]
Photo of the ‘Game Backup Subdomain’ external system pink sticky between the ‘Backup game’ command to the left and the ‘Game backed up’ domain event to the right

4.3.8 Blank Business Rules

Here’s another mechanical step. If an external system did not raise an event, a business rule must have triggered it.

Go through all commands and events not linked by an external system. Add an empty yellow sticky there.

[image: Photo of a blank Business-Rule yellow sticky between the ‘Start game’ command to the left and the ‘Game Started’ domain event to the right]
Photo of a blank Business-Rule yellow sticky between the ‘Start game’ command to the left and the ‘Game Started’ domain event to the right

4.3.9 Business Rules

📝 Discussing Business Rules is the critical moment of Design-Level Event Storming

Ask participants to fill in these business rules with what happens during its execution:

	What is true before (preconditions).

	What is true after (postconditions).

	What remains true all along (invariants).

	Any additional information to clarify what the business rule does.

Some business rules are dead-simple, while others will trigger much discussion. This knowledge-sharing between domain experts and developers is invaluable.

[image: Photo of a Business-Rule containing {precondition: game is frozen, postcondition: 1 active player, postcondition: pieces are movable, invariant: number of players} between the ‘Start game’ command to the left and the ‘Game Started’ domain event to the right]
Photo of a Business-Rule containing {precondition: game is frozen, postcondition: 1 active player, postcondition: pieces are movable, invariant: number of players} between the ‘Start game’ command to the left and the ‘Game Started’ domain event to the right

📝 These conversations can be an occasion to use other practical conversation formats like Example Mapping

4.3.10 Aggregates of Business Rules

Up to here, you’ve always kept the chronology in the design. Now, you will break this to get closer to code design!

When you spot two business rules that deal with similar data, move them on top of one another. Your board should now look like that:

[image: High level drawing of what a Design-Level Event Storming will look like once we group related business rules together]
High level drawing of what a Design-Level Event Storming will look like once we group related business rules together

4.3.11 Aggregates Names

By aggregating business rules, you have formed Aggregates in the Domain-Driven-Design sense!

📝 Finding good names for Aggregates is the last thing to do in a Design-Level Event Storming

At this point, it should be easy to name your aggregates! So next, add an extra yellow sticky on top of the aggregates to give the group a name. For example, in the image below, the Aggregate’s name is “Game.” This is because it groups two business rules that deal with game workflow.

[image: Photo of the ‘Game’ Aggregate materialized by a yellow sticky on top of the business rules stickies for ‘Start Game’ and ‘End Game’ commands]
Photo of the ‘Game’ Aggregate materialized by a yellow sticky on top of the business rules stickies for ‘Start Game’ and ‘End Game’ commands

4.3.12 That’s all, folks!

You’ve reached the end of the workshop! As you’ve seen, Design-Level Event Storming is very structured yet leaves space for critical discussions.

To summarize, you started with the following:

	An important bounded context

	Some domain events in this context

And you ended up with:

	Aggregates and business rules

	Design mockups for user screens

	Automation policies

	A list of interaction points with actors and external systems

	And the most essential thing: shared knowledge and understanding between everyone involved

[image: Photo of a mountain path where we can guess the sun will appear at the next turn. Design-Level Event Storming is a step by step workshop that leads to great outcome.]
Photo of a mountain path where we can guess the sun will appear at the next turn. Design-Level Event Storming is a step by step workshop that leads to great outcome.

You’ve learned everything there is to know to facilitate your first Design Level Event Storming. If you have already run a Big Picture Event Storming, there is nothing to be afraid of here.

Send the invites, and get started!

4.4 Design Level Event Storming 3-minutes summary

ℹ️ In this chapter: In this part, we went deep into the technical details. Let’s take a step back from Design Level Event Storming!

[image: Drawing of a stack of 7 cards written Event Storming on the back. They represent the 7 sections on Design-Level Event Storming presented in this chapter.]
Drawing of a stack of 7 cards written Event Storming on the back. They represent the 7 sections on Design-Level Event Storming presented in this chapter.

This chapter summarizes the key takeaways from all our previous chapters on Design-Level Event Storming and contains references about what to do after a Design-Level Event Storming.

4.4.1 Why would you run a Design Level Event Storming?

In Why Should You Run a Design-Level Event Storming, we explained that Design Level Event Storming bridges Big Picture Event Storming and actual coding with Domain Driven Design. It should be used to zoom on the Bounded Contexts (aka Functional Area) of the system that:

	Are business-strategic and business-differentiating

	Contain complicated business logic, and as such, are worth a Domain Driven Design approach

4.4.2 What is Design Level Event Storming

Design Level Event Storming relies on precise Domain Driven Design concepts. How to Explain Design-Level Event Storming to Your Mother contains a script you can use to introduce the necessary vocabulary:

	The picture that explains everything

	Domain Event

	Command

	External System

	Aggregate

	Policy

	Actor

	Read Model

	UI mock-Up

4.4.3 How to run a Design Level Event Storming

Finally, The Best Agenda For Design-Level Event Storming is a detailed facilitation guide that walks through all the steps of the workshop:

	Present the target design

	Generate Domain Events

	Add Commands

	Add Actors and Policies

	Add Blank read-models and UX mock-ups

	Add Read models and UX mock-ups

	Add External Systems

	Add Blank Business Rules

	Write Business Rules

	Aggregate Business Rules

	Find Aggregates Names

4.4.4 Further Steps

A question we have often heard at the end of an Event Storming workshop is, “So, what shall we do now? How do we keep track of this design?”. Here are four strategies to close the workshop or move on.

4.4.4.1 Highlight the core subdomains

[image: Drawing of 2 subdomains drawn around aggregates on a Design-Level Event Storming board]
Drawing of 2 subdomains drawn around aggregates on a Design-Level Event Storming board

📝 Aggregates already group events together. Aggregates make it easy to draw subdomains.

Here is a design quick-win you can do before everybody leaves the room. The bounded context you worked on might be large, and not all of it might be equally business-critical. So, if you can spot areas of higher importance, everybody will know better where to focus their efforts! DDD calls this the Highlighted Core. The smaller the core subdomain, the more precise the priorities will be.

4.4.4.2 Create curated views

Alberto Brandolini, the inventor of Event Storming, said its actual outcome is in the participants’ shared understanding. This is true, but it might not satisfy everyone in your organization.

A quick fix is photographing the design board and saving it in your knowledge base. Another is to stick the board in the team’s space. Yet, you’ll see that the design board will soon become obsolete!

[image: Screenshot of a Tweet from Alberto Brandolini answering the question “What’s your favourite way to materialize decisions during an Event Storming workshop?” His answer is “Depends on the decisions, and on the context. Usually putting decisions on a flip chart and sharing pictures might do the trick.”]
Screenshot of a Tweet from Alberto Brandolini answering the question “What’s your favourite way to materialize decisions during an Event Storming workshop?” His answer is “Depends on the decisions, and on the context. Usually putting decisions on a flip chart and sharing pictures might do the trick.”

A better way is to capture focused views. For example, domain definitions, problems, and decisions can be collected through specific documents. For more details, check out How to Capture the Outputs of an Event Storming Workshop and 5 Views to Capture the Outputs of an Event Storming Workshop.

📝 You can even push the curated views idea further and fill a whole Bounded Context Canvas. It’s a precise set of views that, together, will give you a deep understanding of your bounded context.

4.4.4.3 Run example Mapping

All the business rules are great candidates for user stories. Example Mapping is a quick and structured conversation format for digging into the details of a user story. Pick a business rule and run an Example Mapping session to turn it into a detailed user story with test scenarios and acceptance criteria.

4.4.4.4 Build a walking skeleton

📝 The best way to get more feedback after a Design-Level Event Storming is to try to build the design!

Finally, the best way to get more feedback is to try your design! Building a Walking Skeleton is the most effective way to learn more about your design. A walking skeleton is a very minimalistic end-to-end implementation of your system or feature. Learn how to select what to put in your Walking Skeleton in How to fight priority paralysis with Event Storming.

[image: A picture of a walking skeleton. Design-Level Event Storming is the perfect workshop for agreeing on the scope of a walking skeleton]
A picture of a walking skeleton. Design-Level Event Storming is the perfect workshop for agreeing on the scope of a walking skeleton

4.4.5 Event Storming the Flow

Here you are: You went from a Big Picture idea to a functional architecture and then dived into the details of your core Bound Contexts. You harnessed collective intelligence and tackled a complex business problem to achieve this.

[image: Photo of a monkey watching itself in a mirror. Now that you are good with Event Storming, you can apply it to your workflow!]
Photo of a monkey watching itself in a mirror. Now that you are good with Event Storming, you can apply it to your workflow!

What if you tried applying this new skill to your own development workflow? We’ll see this in the next part, Event Storming the Flow. Read on!

5 Event Storming the flow

5.1 Three questions to know if event storming the flow could help you

ℹ️ In this chapter: Event storming can be used to improve the flow of work. Answer 3 questions to know if the technique is your go-to choice to address your workflow challenges.

5.1.1 The story of a team that was performing

The Genesis team is working on a software product. The team was once famous for its capacity to respond to client requests extremely fast. Yet, during the last year, each time they received such a request, their work always ended up generating new issues: regressions on the existing code, workarounds that are more and more complex to find, more time dedicated to testing and fixing the regressions than to implement the actual solution.

Although Genesis team members still wished to answer client requests fast, it seemed that a mystery spell had been cast against them. This situation felt as stressful as being trapped in an ever-growing snowball running downhill with no idea on how to stop it. The more they wanted to bring back their capacity to respond to client requests quickly, the longer it would take them.

5.1.2 The story of a team that was anticipating market needs

The Moonraker team is working on another software product. Not long ago, Moonraker people were assigned a task to anticipate a future market need, based on strategic analysis from product people in the management.

Moonraker guys started developing a new component (let’s call it ‘ACME Reactive System’, although we don’t really care about what it is for the purpose of this chapter). It took them 1,5 years to design, build, and test the first version. The good news is that it coincided with the moment when the first client use case was identified. The bad news was that the volume of ‘Reactions’ that the ‘ACME Reactive System’ component should have handled for this client was way higher than what it was meant to be. As the client use case needed to be covered quickly, an architectural decision was made to have the client-facing team (another one) build a local workaround for this specific client. Although the client would be satisfied, it was a ‘cosmetic gesture’. The decision clearly acknowledged that some technical debt was created and would need to be repaid.

When a second client use case was identified, Moonraker people had started to work on other quite urgent stuff. Consequently, Moonraker could only dedicate time during the next 4 weeks to address this new request for the new use case. Although there were still some questions on the level of performance for ‘ACME Reactive System’, the plan to dedicate a limited amount of time seemed acceptable, as the new request was documented with a design to implement. Moonraker people started to work right away. A commitment by the client manager was made to the new client.

We are now one week away to the delivery date. Moonraker people made assumptions with regards to the targeted performance level. They are under pressure to deliver on time, while still taking care of their other urgent stuff. They are raising the question. What is the plan B in case we are late or our assumptions are wrong?

5.1.3 Why are these stories similar?

These stories have three aspects in common

	The problems that they describe are not about a lack of skills

The skills, experience, and knowledge of the team members are unquestionable. The teams have all the necessary skills and experience to deliver the products they are working on.

	The problem persists

In both cases, the sensation of a snowball running downhill is present. For Genesis, no matter what they do, it keeps taking them longer to answer client requests. For Moonraker, no matter what they do, they have difficulties to build a solution that corresponds to the needs. There is a risk for them to lose the trust of their stakeholders.

	There is no obvious solution

When reading these stories, you probably identified a few possible dysfunctions. For example, Genesis probably did not take care of their accumulating technical debt early and continuously enough. Or they may do testing too late in their workflow. Moonraker started their new work assignment with no real client use case, which is probably a recipe for failure.

These hypothetical dysfunctions are probably real. Having said that, you can not be sure that these are the only dysfunctions or even the main ones. Besides, you can hardly know what may have caused these dysfunctions in the first place. And even if you could determine a clear set of causes, it is more valuable to identify what to do to change these dysfunctions than to identify their causes.

5.1.4 What would an event storming the flow workshop bring?

When you do an event storming of the flow, you will visualize the events that occur during the flow of the work you are examining.

[image: Drawing of an Event Storming the flow board.]
Drawing of an Event Storming the flow board.

Then you will look for patterns and feedback loops.

[image: A simple representation of reinforcing and balancing loops with 2 stocks or variables]
A simple representation of reinforcing and balancing loops with 2 stocks or variables

[image: A real life example of a loops diagram, showing a set of variables and loops and how they link together (labels are blurred for confidentiality)]
A real life example of a loops diagram, showing a set of variables and loops and how they link together (labels are blurred for confidentiality)

From there, you will identify levers where to act.

This will allow you to identify actions. These actions aim at changing the system that creates the repetitive patterns resulting in the events. Starting with visualization and doing the next steps allow you dig into the system and to not stay on the ‘apparent problems and solutions’ that only contribute to perpetuate the snowball effect.

5.1.5 How to know if Event Storming the Flow could help you?

In a nutshell, whether your team is working on a software or not, the typical situations in which event storming the flow makes sense are the ones where your answers to the 3 following questions would be no, yes and no:

	Is it a problem of skills? no

	Has the problem been persisting or even growing despite the effort you or your team already put into solving it? yes

	Is there one obvious solution? no

If your answers correspond, read further and get ready to run an Event Storming the Flow workshop on your own!

5.2 Five ingredients to prepare before starting an event storming of your workflow

ℹ️ In this chapter: Event Storming the flow workshop requires 5 main ingredients in the recipe. Get ready to cook!

[image: A picture of fresh vegetables ready to be cooked]
A picture of fresh vegetables ready to be cooked

In the previous chapter, you answered 3 questions to know if Event Storming the Flow could help you.

At this tage, you know the challenge that you are going to explore:

	is not only due to a lack of skills

	persists despite the effort already put into solving it

	does not have an obvious solution.

Let’s get prepared for the workshop with these 5 ingredients:

	A flow to explore

	The right attendees

	A workshop intent

	A briefing

	A real use case

5.2.1 First ingredient: a flow

What is the flow that you will be looking at during the workshop? In other words, in which flow is the challenge embedded?

A flow consists of a succession of activities linked one to another (think of an assembly line). Most of the work we do is part of a flow. In software development, this flow often includes design, test, development, and build activities.

The answer to the previous question goes like this: “the flow that we will be looking at starts from the moment when… till…”.

5.2.2 Second ingredient: the right attendees

[image: A sports team hugging together in circle representing an engaged team of people who will be on the pitch]
A sports team hugging together in circle representing an engaged team of people who will be on the pitch

You want to invite: - the people who do the work in the flow that you identified in the previous question - the people for whom the problem is painful - the people who are volunteering to attend such a session. It means that they want to contribute to removing the problem.

You want to avoid forcing people into the workshop for a problem that they don’t feel concerned about.

You also want to limit attendance to a decent number of people (10 is already a lot!).

5.2.3 Third ingredient: a workshop intent

[image: 3 darts with the extremities touching each other]
3 darts with the extremities touching each other

What would the participants like to achieve with this workshop? Define this intent with as many attendees as possible.

Ask them to answer questions such as: “What is the intent of this workshop? What do you want to achieve at the end of this workshop? How will you know that you achieved this result?”

Unprecise intents such as “engaging people” or “improving collaboration” are worth further questioning.

An intent is like a lighthouse for the workshop. It is necessary to know where to go. It needs to be precise enough to focus. And it needs to be flexible enough to be reached from any starting point. E.g.: “adapt the way we are working together so we have fewer late detections of bugs that provoke rework”.

It’s best when the intent somehow relates to the problem to solve.

5.2.4 Fourth ingredient: an introduction of Event Storming the Flow in a few words

Let’s be honest, the name of the technique - event storming the flow - is not self-explanatory.

Yet, there is nothing complex about the technique. You can explain it in a few words: - during a 15min video call or - in a wiki page with examples or - in a short email.

Here is an example of the latter:

Welcome!

You are invited to a workshop called “Event storming the flow”.

What is event storming the flow?

	It is a visualization technique that has been used in the company on several occasions.

	It aims at creating an aligned understanding of a workflow.

	Once the alignment obtained, the technique allows the improvement of the workflow. For example: how to remove priority blockers? What are the sources of rework? When to take better decisions in our flow?

What is going to happen during this workshop?

This is a collective workshop, as the list of recipients of this email indicates. We’ll use plenty of stickies and follow some simple guidelines to visualize your workflow on a wall. To do this, you will select a real use case that is representative of what usually happens for this workflow. Then, based on this visualization, you will identify: - patterns you wish to remove from this workflow, - levers on which to act to drive the desired change, - and actions to perform.

This is not one of these boring workshops. You will be actively contributing most of the time!

You can also:

	add information about the timing, duration, and the number of sessions,

	provide details about the use case (5th ingredient) or the workshop intent (3rd ingredient),

	share this book, or a link to some posts from the Event Storming Journal blog that inspired the book!

Your goal is to convert a name (event storming the flow) into an attractive promise for attendees.

5.2.5 Fifth ingredient: a real use case

The participants will bring a real use case as a starting point to describe the flow.

Ask them for a recent feature or situation. It needs to be representative of what usually happens in the workflow.

Using a real-life situation is key to:

	prevent theoretical discussion about an imaginary situation

	engage the participants who can discuss a use case they know

	identify a bounded scope for the workshop

	check that you have the right list of participants to cover this scope

Having the use case before starting the workshop is not a must. Still, it is a good way to check the alignment of the participants.s

It’s a good sign when several people identify one. Otherwise, it is an opportunity to take a step back and go back to the intent of the workshop again (3rd ingredient).

5.2.6 Conclusion

If you follow these steps, your Event Storming the flow session is already on a good track! In the next chapter, we’ll see how to visualize a workflow.

5.3 The steps to visualize your workflow with Event Storming

ℹ️ In this chapter, discover:

	Why visualization works great

	Why Event Storming the flow is an awesome visualization technique

	And a step-by-step guide to model your workflow with event storming.

5.3.1 Visualization? Why?

Situations are complex where there is no obvious causality of the problem.

In complex situations, a good first step is to start with a visualization of your workflow.

This means modeling and visualizing what usually happens (events) on a timeline. When you do so:

	You focus on facts, not theories or opinions

	You start with a description of a situation to understand the problem. You don’t state the problem by the lack of one’s favorite solution. e.g. “the problem is we don’t spend enough time on [whatever]” or “the problem is we have no contact with [whoever]”

	You create the possibility to ask: “what made us get there?” and “what is working fine, that we could use as a basis for future progress?”

Thus, visualization:

	helps you find the right actions

	and decreases the likeliness of making the wrong decisions.

5.3.2 Why Event Storming?

Event Storming is a very good technique to visualize your workflow because:

	You do Event Storming with the people who do the work described in the workflow. And it is a collective activity.

	An Event Storming of a workflow starts with a real-life use case. It neither describes a theoretical, nor an ideal succession of steps.

Read more about the benefits of using Event Storming for visualization in this blog post

5.3.3 The step-by-step guide to model your workflow with Event Storming

5.3.3.1 Preparation

	Gather the 5 ingredients to prepare your event storming the flow

	Find the ideal room to run the workshop

	And prepare the room

5.3.3.2 Find a use case to describe

You can identify this use case before the workshop or at the beginning of it. To do so you can ask this question:

What is a topic you recently worked on, that you would qualify as quite representative of how the work is performed in this team / area / department?

[image: Screenshot of the board on which the initial use case is identified]
Screenshot of the board on which the initial use case is identified

Usually, people mention examples like “the [feature name]” or “when we did [a project requiring a significant effort]”

Whatever the use case is, you want the workshop participants to consider it representative. If someone proposed the use case before the workshop, ask the following question at the start of it:

Do you consider this use case representative of how the work usually happens in this team / area / department? If not, what alternative use case would you propose to explore?

Sometimes, you will have to cover several use cases. Each represents a different workflow that usually takes place in parallel in real life.

In this case, model these workflows in parallel on the visual board.

5.3.3.3 Identify an event

Ask people to identify something that happened during this workflow. Give an example such as “feature inserted in the backlog” to show that an event is expressed in passive form and past tense.

You only need an event to start. Write Events on orange stickies.

[image: Screenshot of the board with the definition of an event]
Screenshot of the board with the definition of an event

5.3.3.4 Identify more events, collectively

	First individually (4’), then in pairs (4’) , then in groups of 4 (5’), ask people to identify more events on stickies.

	When discussing in small groups, they should remove duplicates, clarify wording, and start sticking the events chronologically

	Together (5’), invite people to remove duplicates again and align the consecutive events on a horizontal line. If the workflow includes optional paths or alternatives, they should be placed on another parallel horizontal line. Do all this in silence.

	Then inform the participants that this is the first draft of the visualization. Not everything is clear yet. Some words may be confusing. But the goal is to draw the whole picture before going into details. So, ask people:

	“What is missing to complete the picture? Are there some gaps in this workflow representation?”

	“Are there events that occur before or after that have a significant impact on this workflow or that this workflow impacts?”

If the answer is yes, do another iteration starting from 1

At this stage, you will have to ask that someone tidy things up a bit: realign stickies, remove stickies that placed randomly… It should take 2 to 3 min at most. It is better to ask someone than to do it yourself. Do not neglect any opportunity to make the group responsible for their work.

By the way, if you wish the group to feel in charge, benefit from concrete advice by visiting this blog post: Engage the participants during your next Event Storming thanks to the Delegated Missions presents a good approach (“the delegated missions”) to do so. It is called the delegated missions.

5.3.3.5 Identify hotspots and actors collectively

5.3.3.5.1 What are hotspots?

Hotspots are spots of the workflow that are hot 😉. Write hotspots on pink stickies. People will identify with these stickies:

	Things that are not clear (e.g. the meaning of a word)

	Questions (e.g. “How was this decision taken? By whom?” “How long did this step take?”)

	A problematic area or pain point (“This puts more pressure on the teams”)

	They may also write down suggestions (e.g. “what if we had done this with our product owner involved?”)

The goal of sticking a hotspot is to flag that something needs discussion or to park discussions for later.

[image: Screenshot of the board with the definition of a hotspot]
Screenshot of the board with the definition of a hotspot

5.3.3.5.2 What are actors, and external systems?

Actors are the people who contribute most to the occurrence of an event or a chain of events. Use small blue stickies to identify actors and stick them on the 1st event.

You can use the same stickies to identify interactions with external systems, sources of information, or people.

[image: Screenshot of the board with the definition of an actor]
Screenshot of the board with the definition of an actor

5.3.3.5.3 How to identify hotspots and actors?

	Split your attendance into 2 groups.

	One half identifies actors while the other identifies hotspots

	5’: ask people to identify hotspots or actors individually and in silence without sticking them yet

	5’: in small groups of 3 or 4, people share their list, remove duplicates, refine, and stick their actors or hotspots.

	Switch the groups. The group who was on hotspots goes to actors and vice-versa

	2’: ask people to individually look at what was previously displayed

	3’: back in small groups of 3 or 4, people remove duplicates they see and enrich the initial list with their contribution if they want to add any hotspot or actor

5.3.3.6 Final check

You should now have a representation of the workflow that looks something like this:

[image: An example of an event storming the flow]
An example of an event storming the flow

But before going further:

	Re-confirm the use case is representative of the usual workflow by asking the question:

Now that you represented the use case, would you still say that it is representative of how the work is performed in this team / area / department? Or would you suggest another more representative use case?

	Check the picture encompasses enough of the system by asking:

In the next steps we are going to identify improvements and challenge how the “system” works. How representative of the whole system is this visual? Would you advise adding more steps to the left or to the right to enable us to be bold in the next steps?

These 2 checks can open the door to going back to more visualization activity.

5.3.4 Conclusion and next

Once you visualize the workflow you are one step further toward alignment on the problem.

What you already achieved with the group is:

	a shared understanding of how work is performed. This resolves lots of opinion-based debates.

	an identification of what is not explicit enough (hotspots).

You also opened the possibility of broadening the boundaries of your actions. You can enable the diagnosis, based on something tangible.

We will explain how in the next chapter.

In case you are wondering, you can do all the above remotely. We will come back to this in a future part.

5.4 How Metaphors can help you focus and succeed in Event Storming

ℹ️ In this chapter: after modelling your workflow with Event Storming, you will use a metaphor to give a name to this model. This chapter explains how and why this is good practice.

A picture is worth a thousand words. When it comes to understanding complex business processes, a metaphor can be worth millions.

This is a good moment now to take a step back to digest what you see.

You can do this in 3 steps:

	Identify the main steps of the workflow you represented visually.

	Get insights from looking at this updated version.

	Give it a name.

Finding a name or a title to the visual represenation of your workflow is an easy and fun activity that brings important benefits. You can read the list of them at the end the chapter. For example, a title allows you and your team to name what it is that you want to avoid.

5.4.1 First: Identify the main steps of the workflow

Start by asking the participants to:

	Find clusters of events that fit well together.

	Define a name for each of these clusters of events.

	Draw a vertical line between each step. They can use tape or draw lines on a digital tool. Now, your visual representation should look something like this:

[image: A workflow represented on an event storming with main steps separated by vertical lines and a title for each of the steps]
A workflow represented on an event storming with main steps separated by vertical lines and a title for each of the steps

5.4.2 Second: Get insights from looking at the visual.

The previous step made the visual more digestible. Now that it has some structure, it is easier to step back and not get lost in the details.

Ask the participants the following questions:

What are you noticing? What does this picture show? What are your thoughts and feelings? What seems to be a recurring pattern? Where do you see activities that create unproductive results?”

Give them 3 minutes to think alone, then ask them to join in a group of 2 or 3 and discuss their thoughts for 5 minutes.

Once done, ask the whole group to voice some of the things that they shared in their discussions. Don’t let this go on and on. Timebox this discussion to 5 minutes max and try to get as many different inputs as possible.

5.4.3 Third: Pick a title

Now comes the fun part!

Use the following prompt:

Based on your discussions, now find a name for this visual. It can be a name you invent, a song title, or the title of a famous movie. Be creative and have fun!”

Ask participants to think alone for 1 min. Then, in groups of 3, ask them to come up with a proposal and stick it on the wall.

Use dot voting to select the best proposal. Ask participants to:

Select one of the proposals. Pick the one that you would mention, to remember what you want to stop! For example, you could say: “guys, we are doing [title] again”.

Back to the Future, Groundhog Day, and Highway to Hell are classical choices!

[image: A picture of a groundhog to illustrate the movie Groundhog Day]
A picture of a groundhog to illustrate the movie Groundhog Day

5.4.4 Finally: Why is this activity useful? What are the benefits?

Associating a fun title to your workflow may seem trivial. Yet, having a name to refer to, that represents what you want to avoid is very useful for several reasons:

	You can mention it when falling back to the undesired pattern.

	It builds a common language over what your group wants to avoid.

	With a song or movie name, you do not make a drama of the undesired situation but rather make fun of it.

	The simplicity of the metaphor prevents digging further into the analysis.

This 4th benefit is key as, at this stage of the Event Storming, what you want to do is to start looking for possible ways to improve your workflow.

How to do this? Keep reading! This is what we will discuss in the next chapter!

5.5 How to discover the wicked vicious circles in your workflow?

ℹ️ In this chapter: you’ll go beyond the linear view of workflows and uncover the power of feedback loops. learn how to model step-by-step processes with feedback loops, revealing new possibilities to rethink and redesign your workflow.

5.5.1 Vicious circles?

[image: Two goats fighting to illustrate a typical useless fight.]
Two goats fighting to illustrate a typical useless fight.

It was during last Christmas lunch, or during any Sunday family event. Your uncle Dave and your brother-in-law Bob started to discuss. The discussion was about Covid (or the education system, or the level of taxes, or the choices of the national football team coach). What you clearly remember is the overheating tone and the strong opinions that would never converge.

You can see the picture, right? We all witnessed such an opinion-based conversation… And let us be honest, we even took part in one of them. Most of these conversations go nowhere.

Yet, what they illustrate is the following: we all think we excel at knowing “what the real problem is”. We all believe we are excellent at identifying root causes of dysfunctions. Every one of us has an opinion about “why things are not working properly”.

The truth is, we are quite good at finding causes of dysfunctions. Yet, while each root-cause contributes to a dysfunction, there are plenty of causes to problems that are complex by nature. So, we all can point at one or two causes and easily think is THE problem. But what if there were plenty of root causes, and what if they were highly interrelated?

[image: Image of a fishing network to illustrate how causes are linked together.]
Image of a fishing network to illustrate how causes are linked together.

This is what is happening when you are on a journey to improve your workflow: - You want to identify the root causes of the dysfunctions and fix them. - The bad news is that there is more than one root cause. There are plenty of them. - And the worst news is these root causes are all linked.

Fortunately, this chapter shows you how to visualize links between the many causes and consequences. In case you want to know, this visual representation mobilizes basic concepts of systems modelling. But don’t worry and keep reading, it is simpler than what the name indicates!

Visualizing your workflow is an entry door to identifying the vicious circles in your workflow. Remember the overheated conversation between Dave and Bob. The vicious circle probably started when Dave answered Bob with a strong opinion-based statement, to which Bob counter-attacked, making Dave pump up the volume, etc.

Here, you have what is called a causal loop: a cause, creating an effect that becomes a cause to another effect and so on, in a loop.

We call this type of causal loop a vicious circle because it has undesired effects that often persist over time.

Causal loops are present in your workflow. Let’s see how to identify them.

Here are the steps:

	Step 1: Introduce the concept of Variables

	Step 2: Have the participants identify the variables of the workflow.

	Step 3: Introduce the concept of causal loops.

	Step 4: Create a simple causal loop diagram.

Let us detail each of these steps.

5.5.2 Step 1: introduce the concepts of variables.

For example, you can say: > “Variables are characteristic elements in your workflow that can change or impact the overall process, for example: > - Number of people involved. > - Time to take a decision. > - Time to get feedback. > - Time to correct. > - Work in progress.

Variables are things that you can measure or observe. They can be quantities, duration. They can also be information in a broad meaning, or characteristics of relationships.

They influence how your workflow operates. We use variables to help us understand the different factors at play in your workflow.”

5.5.3 Step 2: Have the participants identify the variables in their workflow .

As you introduced the concept of variables, now ask the participants to identify the variables for the workflow.

	Give them 5 minutes alone to list these variables on stickies.

	Ask them to join in groups of two for 5 minutes.

	You can potentially do another round by having groups of two merge to form groups of four.

	Have them display the list of stickies on the wall.

Tip: if participants get blocked at the start, show them a list of potential variables, for inspiration.

[image: Examples of variables such as avialable bandwidth or quantity of unknowns or pressure to commit.]
Examples of variables such as avialable bandwidth or quantity of unknowns or pressure to commit.

At each round, ask participants to:

	Remove duplicates.

	Clarify the name if it is not self-explanatory.

	Check that all variables can be measured or observed. Reformulate and find the variable otherwise.

	Extend the initial list. Ending up with a list of 5 to 15 variables sounds realistic.

5.5.4 Step 3: explain the concept of causal loops.

A bit of storytelling is welcome here:

“Suppose you invest one hundred € on an account with a 5% annual interest rate. After a year you own 105 €. After 2 years you own 110.25 €, etc. The more you invest, the more extra capital you get. And the more extra capital you get, the more you can invest. It is a reinforcing loop.

Let us take another example. In a retail store, as stock levels decrease due to sales, the store places orders to restock inventory. It is a balancing loop. Less stocks -> More orders -> More stock

Reinforcing or (positive feedback loops) can lead to exponential growth or decline, while balancing loops (or negative feedback loop) tend to maintain stability. They often interact.”

[image: Example of a causal loop with feature delivery velocity on one side and number of defects on the other side.]
Example of a causal loop with feature delivery velocity on one side and number of defects on the other side.

5.5.5 Step 4: Create a simple causal loop diagram.

Your role now, as a facilitator, is to have participants draft causal feedback loops between the different variables they identified in the previous step. To do this, our advice is to do an example with them.

Pick a variable from their list randomly. Suppose you pick “Work in Progress”. Use sticky notes and a whiteboard.

Ask them:

“if you have more Work in Progress, what other variable will be affected?”.

“Time to correct a defect” could be one.

“if you have more Work in Progress, will Time to correct a defect increase or decrease?”

Use the color coding from the previous image. Red for reinforcing loops, blue for balancing loops, green when the direction is unknown

As more Work in Progress implies a longer Time to correct a defect, this is a reinforcing loop and you can draw a red arrow between the first and the second variable.

Then ask them:

If “Time to correct” is higher, what will increase? They will probably say “Work in Progress”, or something else.

That is enough for participants to get the point of the exercize. Now, in small groups of 3 to 5, ask participants to continue this activity by adding variables and relationships.

The goal of this activity is not to reach the perfect model of their workflow. Systems modeling is a whole discipline that we are simplifying for our purpose.

Yet, you will quickly observe each group adding variables, loops, and a shared visual taking shape.

[image: Example of a causal loop diagram showing links between variables.]
Example of a causal loop diagram showing links between variables.

Once this happens, ask participants to check that the links they placed are as direct as possible.

Ask them to erase the ones that could be more direct, or to identify new intermediate variables.

If “A” indirectly affects “C”, would there be an intermediate variable “B” between “A” and “C”? For example, between “Work in Progress” and “Time to correct a defect”, there could be an intermediate variable “Time to acknowledge the defect”.

As mentioned, the goal is not to reach perfect accuracy of the model. The next chapter explains how to identify the levers to act upon. You will understand the value of having a “good enough” model when reading it.

📝 Bonus extra step: Take a step back and have participants share their learnings at this point.

At this stage, participants may already have come to striking realizations while stepping back on how their work is organized.

The high inter-relatedness of root causes is likely to be one of them!

If you feel the energy is a bit low in the room, give participants 1 min to individually identify their learnings at this point, and ask a few of them to share their reflections. This usually boosts the energy to continue.

5.6 Identify where to act to improve your workflow

ℹ️ In this chapter: Learn an easy and straightforward method to pinpoint key levers to improve your workflow.

We all dislike wired headphones. They always get tangled up and you must spend an awful lot of time trying to untangle them while your phone is ringing.

The problem with the workflow model created before is that it often looks like a tangled-up headphone wire! It does not make your workflow look less complex. All you have now is a bunch of variables connected with plenty of arrows.

5.6.1 What can you do now?

This secton explains an easy method that we use to make sense of this bunch of variables. We discovered this method in training a few years ago by Bernhard Sterchi.

5.6.1.1 Four steps to find where to act

	For each variable, count the number of outgoing and the number of incoming arrows. Now each variable has 2 coordinates. The first number (“outgoing”) is the X-coordinate, and the second number (“incoming”) is the Y-coordinate.

[image: Variables linked with arrows. On the center the variable called “WIP” for Work in Progress has 2 incoming and 2 outgoing arrows]
Variables linked with arrows. On the center the variable called “WIP” for Work in Progress has 2 incoming and 2 outgoing arrows

	Draw a chart where you can position each variable, based on its 2 coordinates.

	The X-axis is the number of outgoing arrows. It represents how much changing this variable will impact the workflow. More outgoing arrows mean more influence on the workflow.

	The Y-axis represents how much what happens in the workflow influences the variable itself. More incoming arrows mean more dependency of the variable on what happens in the workflow.

[image: A chart showing the number of outgoing arrows on the X-axis and the number of incoming arrows on the Y-axis and a classification into 4 quadrants]
A chart showing the number of outgoing arrows on the X-axis and the number of incoming arrows on the Y-axis and a classification into 4 quadrants

	Now you can classify the variables depending on their position on the chart, as shown in the above and below pictures:

[image: A chart showing the number of outgoing arrows on the X-axis and the number of incoming arrows on the Y-axis with variables positioned and a classification into 4 quadrants]
A chart showing the number of outgoing arrows on the X-axis and the number of incoming arrows on the Y-axis with variables positioned and a classification into 4 quadrants

	Variables that are influenced by the workflow but have little influence over it are placed in the top-left quadrant. These are called “reactive” variables. They are not easy to evolve, and changing them has a relatively low impact on the workflow. You don’t want to use your energy on these variables.

	By contrast, the bottom-right quadrant (high impact on the workflow, low impact from the workflow) is the land of “input” variables. They are much easier to move and have a much bigger impact on the workflow. You want to act on these variables first to influence your workflow.

	Variables located in the top-right corner are difficult to move (high influence from the workflow), and there are risks when moving them (high influence on the workflow). Handle these “critical” variables with care. They are not your priority.

	Variables located at the bottom left are the ones that you don’t really care about. Although you can easily move them, they have a low impact.

	Within the bottom-right “input” variables, choose the ones you can directly influence. This is your starting point for improving your workflow.

5.6.2 Conclusion

The chart and the classification of variables into the 4 different quadrants is a way to make sense of and untangle the workflow model that was the starting point. The “input” variables at the bottom-right of the chart are leverage points. Moving them is relatively easy and has a relatively high impact. In other words, the ratio of impact on the workflow to effort is the highest for these variables.

Remember: your goal was to break the vicious circles of your workflow. The way to do this is by acting on “input” variables first. How to define actions is what we will cover next.

5.7 Define actions that unlock lasting workflow improvements

ℹ️ In this chapter: Discover how to set small, actionable steps to act upon the levers identified in the previous chapter

📝 Wait, why did you want to run an Event Storming the flow again? Everything that you read up to this point point about Event Storming the flow has one goal: allow you or your team to escape endless firefighting and address persistent issues in your workflow.

Expecting change without action is like waiting for your laundry to fold itself — it won’t happen, no matter how hard you wish!

The same goes for your workflow. Simply pinpointing the improvement levers is not enough. Without clear, small actions, your workflow remains a tangle of potential without progress.

5.7.1 Select the most relevant variables.

Assign each participant one or two votes and ask them to vote on the variable(s) near the bottom right of the chart in the previous step.

[image: A chart showing the number of outgoing arrows on the X-axis and the number of incoming arrows on the Y-axis with variables positioned and a classification into 4 quadrants]
A chart showing the number of outgoing arrows on the X-axis and the number of incoming arrows on the Y-axis with variables positioned and a classification into 4 quadrants

This area of the chart is where “input” variables are positioned. Input variables are the ones you can directly influence and potentially have a big impact on the workflow.

Ask participants to vote on the variables they feel they can have more direct influence.

You can tell them:

You have 2 votes to place in the bottom right quadrant where the variables that we can act on are situated. Among these, there might be some that you have access to or control over. Favor voting on these.

5.7.2 Identify small and feasible actions

This step is inspired by the Liberating Structure 15% solution

Taking one of the previous variables at a time, prompt participants to answer the following question:

What is the first thing you can personally do to [verb(change, reduce, improve, develop)] the [variable name], without more resources or authority?

First, make it an individual reflection and then a small group s of 3 to 4 conversations.

Ask small groups to select the most relevant ideas for the next step.

5.7.3 Use an action template.

Hand out an action template and explain that the goal is to make actions as tangible and small as possible. Most of the time, actions remain too big, too broad, or sound too much wishful thinking.

[image: An action tempate with areas to fill: the first thing to do to (verb + desired change) is to (action). e will know that our hypothesis is correct if we observe (indicator)]
An action tempate with areas to fill: the first thing to do to (verb + desired change) is to (action). e will know that our hypothesis is correct if we observe (indicator)

First, give each group 10 min to fill one action template. Then ask each group to read each other’s actions . Unless there are questions about the actions, ask one person to volunteer for each action to ensure it will be performed.

5.7.4 Planning actions and following-up and next

The journey of a thousand miles starts with the first step.

Of course, small actions will not fix all the big issues with your workflow. This is why it is important to plan the next follow-up. The rule here is: the earlier the better.

Small actions are done in short iterations. The goal is to promptly offer an opportunity to inspect the results of the actions and adapt. Plan a follow-up call or session in a few days or weeks (at most). You do not need all the participants for this short call or session, but the main contributors to the actions.

On this occasion, use questions such as: - What did you plan to do? - What did you actually do? - What happened? What about the [variable name] evolution? - What’s next?

Several iterations may be needed, but with perseverance, the variable will move, and the workflow will improve.

5.7.5 Conclusion

Small actions are often difficult to identify. We explained how to focus on specific variables and refine tangible actions to perform the smallest ones. This lets us quickly reflect on the results and adapt.

The work you performed during the Event Storming of the flow can feed these actions for several months! What is described in this chapter can be repeated several times before your workflow has changed so much that it is worth doing a new Event Storming again, maybe in 9 to 15 months, as a rule of thumb.

Congratulations, you are done! You can close the Event Storming the flow session. You have gone a long way. Identifying small actions to improve your workflow is a great outcome. And you should be proud of it.

Yet, there is more! You opened the door to new ways of analyzing and dealing with recurring issues in your workflow. Your team is now able to see their workflow less as a chronological series of actions and more as a set of interrelated feedback loops on which they can act.

In the next chapter we will summarize all the Event Storming the Flow journey. But for the moment, it’s probably time to celebrate with your team!

[image: Celebration!]
Celebration!

5.8 Event Storming the flow 3-minutes summary

6 Rethinking Event Storming in Remote

6.1 Why Go Remote with Event Storming? The Surprising Benefits

ℹ️ In this chapter: Co-located Event Storming can be a real logistics challenge. Let’s see how the remote alternative not only save time and money, but can also improve outcomes, inclusivity, and facilitation!

[image: Drawing of a stormy cloud with Event Storming elements flying around in it: orange stickies, laptops, people… It’s also written in big letters “Event Storming in the Cloud” in front of it all.]
Drawing of a stormy cloud with Event Storming elements flying around in it: orange stickies, laptops, people… It’s also written in big letters “Event Storming in the Cloud” in front of it all.

Let’s run our ES at the next company yearly retreat… That is in 9 months!” Wait a second, wasn’t Event Storming supposed to speed up decision-making?

Let’s not kid ourselves; since COVID, hybrid work has become the default. Many teams are now distributed, and there are always people working from home. Running an Event Storming with everybody at the same place and time has become a real challenge.

At first, we were skeptical about adapting the workshop to remote. Yet, as we experimented, we discovered remote Event Storming had many great benefits. With good preparation, your results will be at least as good as when co-located.

6.1.1 Why run an Event Storming remotely?

6.1.1.1 The shortcomings of co-located Event Storming

First, in-person Event Storming comes with a lot of practical constraints:

	Your team might be spread over many places, maybe in different countries. Organizing to get everyone at the same place and time adds waste:

	Traveling and accommodation will cost money and organization time.

	You’ll have to schedule a few weeks in advance to accommodate everyone’s agenda. This will delay the decisions you can make in the workshop!

	The situation is not that much better if you all work at the same place! People might work from home regularly, so you’ll still have to organize around this.

	Finally, co-located Event Storming logistics might be problematic. For example, finding an adequate room in your office can be difficult, so you’ll need to rent a place!

[image: Photo of travelers carrying their bags in an airport. Co-located Event Storming often involves a lot of business trips.]
Photo of travelers carrying their bags in an airport. Co-located Event Storming often involves a lot of business trips.

6.1.1.2 Doing Event Storming regularly

In a hybrid world, remote is the only option to leverage Event Storming as a regular practice. For example:

	Co-location is a real constraint if you want to run a quick refresh to finish a task or feature.

	Or if you want to integrate Event Storming as a quarterly practice.

	Here’s another: you’ve just finished a co-located Big Picture Event Storming. You’ve decided to follow up with a Desing Level. Unfortunately, everyone is already returning to their homes!

6.1.2 Remote ES as an opportunity

6.1.2.1 The obvious advantages

Let’s start with the obvious: without travel and a big room to rent, remote Event Storming is

	Cheaper.

	Greener.

	And it saves you from all the physical setup of an in-person Event Storming.

[image: Photo of a light bulb with tree leaves instead of the filament. By avoiding business trips, remote Event Storming is way better for the planet!]
Photo of a light bulb with tree leaves instead of the filament. By avoiding business trips, remote Event Storming is way better for the planet!

6.1.2.2 Running Event Storming regularly

With lower preparation time and budget, you can run Event Storming more regularly! As mentioned above:

	“Refresh” your Event Storming every quarter.

	Dive into a bounded context with Design-Level at the last responsible moment.

6.1.2.3 Leverage digital tools

Then, remote workshops rely on two main tools: a virtual whiteboard (Miro, Mural…) and videoconferences (Zoom, Teams…). These tools come with plenty of built-in digital benefits:

	A persistent design board.

	“Real” infinite design space!

	The board is easy to export or copy, which enables sharing with a larger community.

	We reuse and improve board templates from one workshop to the next!

	It’s possible to record the sessions to archive how we arrived at some decisions.

	New AI features are appearing, like summarizing stickies or capturing transcripts of workshops.

6.1.2.4 More Time for Deep thinking

In-person Event Storming is an intense face-to-face communication exercise. Remote Event Storming, however, gives more space for other ways of thinking. As a facilitator, you can leverage this! For example, by asking: “Before the next session, can anyone find an answer to the question raised by this hotspot sticky?” In more detail:

	It leaves more time for solo and deep thinking.

	Asynchronous “research” reduces communication bottlenecks (when everybody listens or waits for someone else).

[image: Photo of a man siting cross-legged on the stomp of a tree, thinking. Remote Event Storming leaves more time for deep thinking than the intensive 2 days co-located workshop.]
Photo of a man siting cross-legged on the stomp of a tree, thinking. Remote Event Storming leaves more time for deep thinking than the intensive 2 days co-located workshop.

6.1.2.5 More inclusive

Finally, remote is more inclusive!

	Some people need specific equipment to work. Others have difficulties in crowded places. Remote help these people take part in the workshop.

	Letting everyone contribute harnesses neurodiversity, which improves collective decision-making.

If you have someone in your team with a disability, just adapt the work environment so they can do their job. For everything else, keep it exactly the same. In the Paralympics sports, adapting to the environment means we compete among people with similar disabilities. For the rest, we do exactly the same as any other high-performing athlete who would have no disability. - Marie-Amélie Le Fur, President of French Paralympic committee.

6.1.2.6 Remote Event Storming will make you a better facilitator

Remote Event Storming will also benefit you as a facilitator. Remote facilitation will teach you lessons you can also apply when co-located!

For example, we had to learn how to give more explicit instructions. Once we took on this habit, we discovered it also improved our co-located sessions!

Here is another example: energy often dips during the Storytelling phase. When co-located, we accepted it as a necessary step in the workshop. In remote, it always happens and destroys people’s attention. So we combined breakout rooms for different board areas with “Shift and Share.” (Shift and Share is an organized way for all groups to visit the other rooms). This also improves the workshop when co-located, especially with a large audience!

6.1.3 So, what are the limitations of remote Event Storming?

6.1.3.1 Reduced Team building

There are plenty of tips to make remote Event Storming more fun and make people feel connected. Yet, it’s impossible to reproduce the same human bonding experience as when we all are in the same room.

A co-located workshop, where everyone tackles the same challenge, is excellent for team-building! It’s often also the occasion to go outside and eat together.

[image: Screenshot from Rachel Davies’s talk “Sustaining Remote – First Teams” at Agile on the Beach 2019. It shows a remote team that gathered for a co-located “retreat”]
Screenshot from Rachel Davies’s talk “Sustaining Remote – First Teams” at Agile on the Beach 2019. It shows a remote team that gathered for a co-located “retreat”

Watch the full talk

6.1.3.2 No self-organization

Event-Storming participants naturally self-organize in smaller groups to tackle the different subjects. People will walk around, read what’s on the board, bump into each other, and start discussing stickies. Unfortunately, this will not happen when remote. These sub-group discussions will need to be explicitly facilitated! This is the primary rule of remote facilitation:

💡What was implicit needs to become implicit!

That’s why remote Event Storming facilitation is not easy! It will need more preparation, structure, and guidance. Yet, don’t worry, we have your back! The following chapters will guide you through facilitating a remote Event Storming.

6.1.4 Embrace remote Event Storming

The in-person Event Storming experience, intensity, and team building are irreplaceable. Yet, our practice shows that doing it remotely is possible. Remote Event Storming compensates with unsuspected benefits. With good preparation and adaptation, remote Event Storming rocks! Let’s see how to facilitate it.

6.2 Simplify Remote Event Storming With 7 Essential Practices

ℹ️ In this chapter: Here are 7 fundamental practices for remote Event Storming that increase delegation, reduce fatigue, improve documentation, and boost autonomy for any workshop.

[image: Screenshot of a virtual whiteboard with stickies containing this chapter’s title and the 7 practices: 7 Essential Practices for Remote Event Storming, Short Sessions, Breakout Rooms, Collaboration Roles, Silent Sorting, Self Explanatory Board, Practice Session, Co-Facilitation.]
Screenshot of a virtual whiteboard with stickies containing this chapter’s title and the 7 practices: 7 Essential Practices for Remote Event Storming, Short Sessions, Breakout Rooms, Collaboration Roles, Silent Sorting, Self Explanatory Board, Practice Session, Co-Facilitation.

We just mentioned a key rule of remote facilitation: “What is implicit must become explicit!”. As a facilitator, you must take the extra step to trigger collaboration that would naturally happen if people were co-located. For example, you cannot bring beverages and food to the workshop and expect people to take some when needed. Instead, you’ll have to explicitly ask them to gather some at their desks from the beginning!

Here are seven essential practices that make the implicit explicit when running an ES in remote:

	Split into short sessions

	Regularly break out into topic rooms

	Assign collaboration roles

	Merge work with Silent Sorting

	Keep the board self-explanatory

	Make participants practice first

	Find a Co-Facilitator

Let’s now see how to use these 7 “explicit” practices for real!

6.2.1 Split into short sessions

Having everybody for two days in a co-located Event Storming is incredibly effective. It’s also quite exhausting! Trying to mimic the same focus remotely will leave everybody on their knees. There is no way a human can sustain their attention through a screen for 8 hours.

So, book short sessions! We recommend 1h30 sessions. For example, instead of a two-day workshop, schedule daily sessions for two weeks or twice daily for one week. As mentioned in the previous chapter, this lets you leverage the time between sessions by:

	Asking participants to look up more data.

	Adapting the workshop agenda.

6.2.2 Regularly break out into topic rooms

One of the great forces of Event Storming is that unique groups of people emerge to tackle the problems at hand. How can we replicate this in a remote setting?

[image: A group of people standing together. Creating team-sized groups to work in breakout room is crucial to keep the workshop effective.]
A group of people standing together. Creating team-sized groups to work in breakout room is crucial to keep the workshop effective.

We can use the Open Space activity to make the group creation explicit. It’s composed of two phases:

	The pitch: anybody can propose and present “room” topics

	The breakout: participants join whichever room they want

You can find more details about how to run a remote Open Space on Philippe’s blog. The idea for remote Event Storming is to run every session (as described above) as an Open Space. The typical Open Space has no pre-defined goal; one of its rules is “Whatever happens is the right thing.” However, as an Event Storming facilitator, you have a goal and an agenda! You will need to twist the Open Space so that people follow the Event Storming steps:

	For some phases of the workshop, you will be prescriptive about room topics

	You will organize knowledge sharing between rooms after every breakout

	You will need some follow-up about what happens in the room

In more detail:

	Gather and share the workgroup topics. And, at first, be prescriptive about the room topics. Yet, let people suggest their topics more and more as you progress through the Event Storming. You will need a visual marketplace to list the topics.

	At the beginning, split the board by zone (example: left, middle, right). Each room can focus on one part of the board.

	Later, split by functional area and associate each room to one or more areas.

	At the end, let people come up with their topics.

	Let people self-assign to the various workgroups. In the beginning, insist on having similar-sized groups. Become less and less strict as topics emerge from the participants.

	Let them work in breakout rooms. And visit the groups to make sure things are going well.

	Organize a Shift and Share. Leave an “owner” in each room, and ask the others to “visit” the other rooms for a chat. This will cross-pollinate all the knowledge that emerged from the different rooms. Learn more about facilitating this on the Liberating Structures website.

	Gather follow-up stickies. Collect pink “problem” stickies from all the rooms. In this setup, it’s also a good practice to do the same with “decision” stickies: we use green ones. Collect them in a central space. Problem stickies are great candidates for room topics in the next session.

We find this sequence of activities central to facilitating a remote Event Storming. Once in place, this rhythm becomes the “pulse” of the Event Storming.

Side note: you can reuse this structure for many collaborative design activities!

6.2.3 Assign collaboration roles

In a co-located Event Storming, there is only one role aside from facilitator: participant. Everybody should create stickies and change the design board.

Here’s a story from the first remote Event Storming we facilitated. After a few sessions, we realized that, with their computers at their fingertips, participants were not as engaging as we were expecting. A small group was running the show while others were taking a backseat. The overall experience was slow and exhausting. We decided to start the next session with a mini-training about Delegated Missions. We explained to participants that they had to self-organize with these roles in the work groups. It tremendously improved the workshop: participants improved their feedback on the sessions, and we were progressing faster!

I had a glimpse at the epiphany of remote work. (feedback from a participant at the end of the workshop)

Small work groups are already making things better. Let’s go further by assigning explicit participation roles. Here are two schemas that work well; pick the one you feel most at ease with:

[image: A lion and bear puppets. Assigning collaboration roles to participants in work groups is key to have them self-organize when the facilitator is not present.]
A lion and bear puppets. Assigning collaboration roles to participants in work groups is key to have them self-organize when the facilitator is not present.

6.2.3.1 Option 1: The “mob”

This one builds on the rules of Mob Programming. You can find the details of this technique on Nick Tune’s blog. The roles are:

	One Storyteller who says what happens in the domain.

	One “facilitator” takes notes with stickies and ensures the session is on track.

	The other participants (the “Mob”) can interrupt, ask questions and give feedback.

They should switch the roles every few minutes; a timer is useful!

6.2.3.2 Option 2: The Delegated Missions

This one is slightly more involved but also more collaborative. Matthieu wrote a complete guide about it. Here, different people take on different roles for the five ingredients of collaboration:

	The facilitator: structures the interactions and finds volunteers for the other roles

	The timekeeper: gives rhythm and makes sure things happen on time

	The intent keeper: shares the goal and makes sure the workshop progresses towards it

	The decision pusher: triggers decisions

	The meta feedbacker: shares feedback and improvement options based on their observation

They can keep the roles for the duration of a breakout.

6.2.4 Merge work with Silent Sorting

[image: A close-up of a person with her finger on her lips. Silent Sorting is one of these activities that looks weird when co-located, but that makes wonders in remote!]
A close-up of a person with her finger on her lips. Silent Sorting is one of these activities that looks weird when co-located, but that makes wonders in remote!

We commit to recombining the results when we break out into topic rooms. You don’t want a single person to read through everything while everyone else listens. Silent Sorting is a recombining practice that does wonders in remote. It’s one of the few practices that works better remotely than in person! Here is how its magic goes:

	Give a few minutes for everyone to silently read through what the others created

	Still silently, ask everyone to move any sticky to organize them in a coherent whole

	Finally, let people discuss the problematic points.

This works well to recombine work on different parts of the design board. It also works well to merge the output of various groups working on the same task. Here are some examples:

	At the beginning of the workshop, we create sub-groups to sort events chronologically. When the groups join, use silent sorting to organize all the events in a coherent timeline.

	There is a step to flag the bounded contexts as generic, supportive, or core. People do this alone, in pairs, small groups, and all together. At each step, silent sorting is used to merge the design of the smaller groups.

6.2.5 Keep the board self-explanatory

To participants, breakout work implies that a lot happens in “other rooms.” The primary way to catch up is by reading the board. Keeping the board clear saves plenty of questions and answers.

So, as much as possible, strive for a self-explanatory design board. Explain this to participants. Repeatedly remind them to make the board easy to understand. As a facilitator, play “the silliest person in the room,” ask questions, and clarify the board.

If it feels worth it, you can also ask all participants to take 5 minutes of all-hands “tidy the board” time. Propose they add clarifying notes as they go. If needed, they can add questions on pink stickies.

6.2.6 Make participants practice first

The good practices for a remote or co-located workshop are different! Intense remote collaboration is something new to most participants. Make the participants practice these workshop techniques before starting the actual Event Storming!

Do you remember our above story with Delegated Missions during our first remote Event Storming? Getting our audience to practice for 10 minutes was key to giving the participants the autonomy to use the techniques.

[image: A group of musician on stage for a rehearsal. Althought counterintuitive, but getting participants through mini-practice of the remote workshop techniques before will make the Event Storming more time efficient!]
A group of musician on stage for a rehearsal. Althought counterintuitive, but getting participants through mini-practice of the remote workshop techniques before will make the Event Storming more time efficient!

Here are three of the above techniques that are worth practicing before:

	Group forming. Make them practice a loop of Open Space, Shift & Share, and stickies collection.

	Roles. Get them through a co-creation activity, using the mob or delegated missions roles.

	Synthesis. To merge, get them through a co-design activity using the 1-2-4-all scheme and Silent Sorting.

It’s also worth practicing technology and setup:

	An online whiteboard tool (Miro, Mural, …). Even if the tools are relatively intuitive, they take a bit of practice to use very well. For example, how to “follow” someone else, hide cursors, and navigate quickly…

	Finally, practice is a way to test the physical setup of each participant. We recommend two screens:

	one with the online whiteboard

	and another with the videos of the participants.

You can make them practice for 5 minutes at the beginning of each session. You’ll have to split the full practice depending on what will happen next. You can also make them practice all the above in advance. This could be a sort of “mini-training” for remote workshops.

6.2.7 Find a Co-Facilitator

You might be wondering:

All this remote facilitation might seem like more work. How will I manage it all?

You don’t have to! Get a co-facilitator or even many co-facilitators. This has plenty of benefits:

	Share the workload

	Be present in different breakout rooms at the same time

	Keep the board tidier

	Make sure that participants follow the proper collaboration patterns

	Provide a different perspective

	Avoid mistakes by asking your co-facilitator, “Do you have anything to add? Did I forget anything? Did I get it all right?”

	Have a pair to discuss how to adapt the workshop between sessions

Finally, not doing this alone is also more fun and less stressful!

6.2.8 The benefits of making the implicit explicit

[image: A person handing out a gift box. Making everything explicit comes with plenty of benefits for all parties.]
A person handing out a gift box. Making everything explicit comes with plenty of benefits for all parties.

At first sight, all these practices might seem cumbersome, unnatural, and extra work! Yet, when paying closer attention, they maximize the overall value of the workshop.

6.2.8.1 For the facilitator

For example, work should be more sustainable during the workshop itself:

	You will delegate much facilitation to the participants and your co-facilitator.

	Also, short and regular sessions save us from the two-day Event Storming marathon.

6.2.8.2 For the participants

These practices increase the workshop’s return on investment for participants:

	The explicit facilitation will make participants more autonomous. Meaning they will be more capable of running an Event Storming by themselves in the future

	Keeping the board tidy and explicit is self-documentation. Take a snapshot to record the workshop output.

6.2.8.3 Finally, for the organization

Making the Event Storming explicit will turn it into a learning experience!

	Participants will learn reusable remote workshop skills. This will make them more effective in their day-to-day work!

6.2.9 Do you feel ready?

These techniques are the essence of effective remote facilitation! Do you feel ready to run your first remote Event Storming? If so, go ahead! Otherwise, read-on, we will go through the agenda in detail and dig into specific aspects.

6.3 Your Step-by-Step Guide to Remote Event Storming

ℹ️ In this chapter: This is your 13 steps walkthrough to run your remote Event Storming. From logistics to Storytelling and beyond, through pre-facilitation and Events Generation: just follow these steps for a successful workshop!

The previous chapters covered the fundamental principles and practices of remote event Storming. If you are new to remote workshops, you might wonder:

In practice, I still don’t how to run a remote Event Storming! I need final guidance to organize and run my first workshop.

Now is the time to get more concrete!

💡Just follow this step-by-step guide!

6.3.1 Preparation

Before you launch your remote Event Storming rocket, check these pre-flight essentials!

[image: Drawing of 2 people preparing launching a mini ‘Event Storming’ rocket. There is a bubble with some text written ’Countdown to Remote Event Storming. Launching in 7, 6, 5, 4, 3, 2, 1, Go!!]
Drawing of 2 people preparing launching a mini ‘Event Storming’ rocket. There is a bubble with some text written ’Countdown to Remote Event Storming. Launching in 7, 6, 5, 4, 3, 2, 1, Go!!

6.3.1.1 ⏹️Get the right tool

You need a tool with an “Infinite design board” and a great user experience. We’ve had success with Miro. Mural also has a good reputation. Here are alternatives you should AVOID:

	Online Slides. You can run successful remote workshops with online slides like Google Slides. Yet, these tools lack an “infinite design board” of Event Storming.

	Microsoft Whiteboard’s UX is too clumsy (at the time of this writing) to run a long workshop like Event Storming.

[image: Photo of a set of tools for repair work. Choosing the collaboration tools can make or break remote Event Storming]
Photo of a set of tools for repair work. Choosing the collaboration tools can make or break remote Event Storming

6.3.1.2 ⏹️Find a co-facilitator

The ideal partner would be:

	Experienced

	Enthusiastic

	Has already facilitated a remote Event Storming!

If you cannot get this rare gem, try to get someone with some of these characteristics! Enthusiasm is the most important: someone whose communicative energy will keep participants engaged. Also, avoid getting someone with some critical knowledge required for the workshop. For example, a key business expert should focus on the workshop content!

6.3.1.3 ⏹️Book the ES sessions

We recommend starting with five sessions of 1h30, once or twice a day. Also book five follow-up placeholders to activate later. In total, this amounts to 15 hours. More work will also happen between sessions as you assign homework to participants. There is no rule about how long the Event Storming will take. It varies depending on the scale of the problem space and how deep you want to go. Later, add or remove sessions depending on how you are progressing.

6.3.1.4 ⏹️Prepare the board

Before running the session, you will need to prepare a virtual board. The easiest way is to start from a template. You can find some good ones on your online whiteboard tool. Here are templates for Miro. You will have to edit the template to fit your specific needs. Remember, it should be as self-explanatory as possible. Make sure that:

	You lock the background! You don’t want the design board to move whenever someone makes a bad move.

	It contains workshop instructions. Most templates already have this 😀.

[image: Screenshot of the Miroverse community templates for the request ‘Event Storm’.]
Screenshot of the Miroverse community templates for the request ‘Event Storm’.

Don’t hesitate to embed tool usage documentation for the main actions:

	Creating a new sticky

	Zooming in and out

	Hiding cursors

	Following someone

	Bringing everyone to me

	…

6.3.1.5 ⏹️Rehearse

We encourage you to rehearse facilitation before your first remote Event Storming. Find a group of Event Storming enthusiasts and give it a try. Make it as close as possible to the real thing. They don’t have to be participants in the Event Storming you are planning. They don’t have to be plenty either:

	10 is ideal for testing the “large group dynamics,”

	But a rehearsal with four people remains very valuable.

Alberto used to use a food delivery service startup as a problem space in his masterclass. This is excellent because everybody understands it, and it features many different roles.

6.3.1.6 ⏹️Send invites

The invitation should be the same as for a co-located Event Storming (see previous chapter. It should also contain extra instructions for tools setup, though:

⚠️ Take A Moment To Setup Your Technical Environment!

A reliable technical setup is crucial for the remote Event Storming to function well. Please follow these steps before the workshop:

	Install the online dashboard tool Miro (or Mural, or whatever)

	Make sure you have a quality webcam so that others can see your non-verbal communication

	Make sure you have a quality sound setup. We need to all hear each other clearly, without background noise. We recommend a quality headset or booking an isolated and calm room.

	Make sure to have a solid Wi-Fi or cable internet connection during the sessions.

	Attend the technical pre-session to:

	Discover how the workshop will unfold

	Verify your technical setup

	And practice some critical remote collaboration tricks.

6.3.1.7 ⏹️Run a first “get ready” session

[image: Photo of a band practicing in their garage. Having a first ‘practice’ session goes a long way to make your remote Event Storming successful.]
Photo of a band practicing in their garage. Having a first ‘practice’ session goes a long way to make your remote Event Storming successful.

Before starting the actual Event Storming, run a setup session. The goal is to make sure that all participants are ready for the workshop:

	Check that all participants managed to get their environment ready.

	Verify that everyone can connect to the design board

	Verify that everyone has a well-functioning webcam and headset

	Go through a mini-course about how they will collaborate during a remote workshop. As we explained in the previous chapter, the main points are:

	Forming breakout groups

	Using facilitation roles

	Designing collaboratively with 1-2-4-All and Silent Sorting

	Finally, run a business briefing from sponsors and a workshop agenda presentation

Don’t run this session too much in advance; otherwise, people will forget!

6.3.2 The Workshop

[image: Drawing of someone jumping in the “Remote Event Storming Pool”. Your first remote Event Storming workshop will feel like jumping in a pool for the first time. This chapter is your guide to reassure you.]
Drawing of someone jumping in the “Remote Event Storming Pool”. Your first remote Event Storming workshop will feel like jumping in a pool for the first time. This chapter is your guide to reassure you.

Your first remote Event Storming will feel like jumping into the swimming pool to know if you can swim! Don’t worry, though; with this guide, you will discover that you have a foothold!

Here is a remote Event Storming agenda, with detailed facilitation instructions. Follow the guide, and it will go well.

📝 What follows builds on previous chapters that you could read for a refresher:

	Step by Step Guide to run your Big Picture Event Storming.

	Remote Event Storming Simplified: 7 Essential Practices

6.3.2.1 ⏹️Welcome

There are two extra points of attention when running Event Storming remotely:

	Ask participants to turn on their webcams. Depending on the culture of your organization, you might need to insist! You can use something like that: “90% of Event Storming is about collaboration, and 60% of collaboration is non-verbal. So please turn on your webcams. Poor internet connection is a valid excuse, but it’s the only one!”

	Do a last call to ensure that everybody’s technical setup is working (check the above for details)

6.3.2.2 ⏹️Events Generation

This phase is solo work. It works almost as if co-located. The only difference is the usage of virtual stickies instead of paper.

6.3.2.3 ⏹️Sorting Events

This is when the collaboration starts! It’s also when you will use the seven essential practices of remote Event Storming.

	First thing: if you haven’t done it before, it’s the last opportunity to run a collaboration practice session.

	To smooth out the sorting, you’ll need to split the participants into breakout rooms:

	Create arbitrary subgroups of 3 and ask them to sort their events using Silent Sorting.

	If you have more than 15 participants, add an extra round of intermediate breakout rooms. You’ll need to merge three subgroups of three into groups of nine manually. Then ask them to silent sort again.

	When you call everyone back together, give participants a moment to review the work of other groups silently. Continue with Silent Sorting and only then open the discussion to complete the board.

	Throughout, visit the rooms to monitor participants’ progress and provide guidance as needed. (See the Delegated Missions or the Mob Roles from the 7 Essential Practices.)

	Finally, as events find their place, make sure to keep the board tidy

6.3.2.4 ⏹️Adding Actors and External Systems

[image: Photo of an actor during a play. All good stories have actors and heroes, and it’s the same in Event Storming!]
Photo of an actor during a play. All good stories have actors and heroes, and it’s the same in Event Storming!

This step is typically brief and straightforward. In the spirit of Silent Sorting, ask everyone to add Actors and External Systems to the design board. After a moment, ask participants to voice questions, disagreements, and counterproposals.

6.3.2.5 ⏹️Storytelling

The co-located way of walking through the design board all together is a pain when remote. Here is an alternative flow using subgroups.

	Split the participants into breakout rooms according to the timeline. Create separate rooms for each board section and ask people to self-assign. It implies extra setup and facilitation: this is when a co-facilitator is helpful.

	End the breakout-room time by asking each group to come up with:

	Pink stickies for problems and questions.

	Green stickies for decisions.

	Run a Shift and Share so that each group has the opportunity to visit the rest of the design board

	Finally, copy all the problem and decision stickies into two dedicated boards and take a short moment to review them.

You can use a similar approach when doing Reverse Storytelling.

6.3.2.6 ⏹️Follow up activities

From this point forward, the agenda for the event storming is more adaptive. Orient the workshop to different activities depending on what is most valuable. Some activities have their built-in workflow; in this case, stick to it. Otherwise, use breakout rooms, problem and decision stickies, and the Shift and Share flow. This is an excellent alternative to having everybody listening to a central “driver”. As the facilitator, it’s up to you to decide what topics the breakout rooms should have:

	You can use sections of the board, roughly following the timeline (for example, Storytelling)

	Pink “problem” stickies make great topics! A session of fixing pink stickies can be pretty effective.

	It can be a pure open space, where anyone pitches their topic for their room.

	It can also be a mix of the above: an open space with a few pre-defined topics.

Finally, here are two last advice to remember:

	Don’t forget to use Silent Sorting whenever subgroups have to merge their work.

	Visit the breakout rooms to make sure they are effective.

[image: Photo of a vegetal tunnel. Once you have setup the Event Storming on good tracks, and as long as you stick to the fundamental practices, the workshop is on good rails, and should work out fine!]
Photo of a vegetal tunnel. Once you have setup the Event Storming on good tracks, and as long as you stick to the fundamental practices, the workshop is on good rails, and should work out fine!

6.3.3 Benefits

Again, the main benefit of following this workflow is stressless facilitation because you’ll know that you:

	Won’t forget anything. You can use this chapter as a reference walkthrough for remote Event Storming facilitation.

	Will follow the good practices of those who battle tested remote Event Storming before you

	Will save work by reusing invitation and board templates.

As a bonus: this workflow makes some practices (ex: Reverse Storytelling) even better than when co-located!

6.3.4 You are ready!

This is all there is to know to run a remote Event Storming! If you haven’t yet, you can send your invitations and start the preparation.

In the following chapters, we will delve into the advanced challenges of remote facilitation. How to leverage the small sessions? How to keep people engaged?

6.4 Leverage splitting a session in small chunks in remote

6.5 How to keep people engaged in a remote Event Storming

6.6 Remote Event Storming in 3 minutes

7 General tips for Event Storming

7.1 The ideal room for your in-person Event Storming

ℹ️ In this chapter: How to make sure you select the right room (and avoid the wrong one) for your in-person Event Storming? Use the below checklist!

We did one of our first event storming with a team who was trying to envision a target architecture.

We had a very good relationship with the architect and the team members. So, when we offered to try Event Storming with them, they all said yes. We jumped into the wild and learned the hard way that a room can make or break your event storming!

[image: A 6x4m room with a big central table and glass walls]
A 6x4m room with a big central table and glass walls

The room we booked was like the one the picture. Size: 6m x 4m, with a big unmovable table in the middle, a window on one side, a screen on another wall, and a window. This only left one available wall for our event storming. Unfortunately, the wall surface was asperous. The adhesive tape was not sticking onto it. The kraft paper fell several times!

[image: An asperous wall on which posters don’t stick]
An asperous wall on which posters don’t stick

Due to a lack of space to move around, the 10 participants had to stay packed in front of the wall. The room temperature started to rise. We opened the window to get some fresh air but got the street noise instead. We had to open the door and, as a result, hide a part of the event storming. Then some participants spotted the comfortable chairs and decided to use them.

Bottom line: this first experience was rather “amateur” and participants disengaged themselves quickly.

Hopefully, after reading this chapter, you should not reproduce our rookie mistakes!

The following checklist will help you pick the right room. This list is applicable for any kind of event storming (big picture, design level or event storming the flow) as the room settings is similar in all cases.

7.1.1 What you want for your room is:

	A long wall: aim at 5m minimum – more is better (Alberto Brandolini mentions 8m!).

	Other walls to stick posters

	A room that is big enough so people:

	can step back (physically) to look at the long wall

	feel comfortable and not squeezed

	can move around without being blocked by others

	can find a space to gather in smaller group for a few minutes

	A room that is not too big so people are less likely to keep physically distant from the main wall. As a rule of thumb, if the participants are standing between you and the wall, you should still be able to read the tickets if written with block letters.

	A room with windows to let light and air come in. You want participants to be able to breathe and open their minds!

7.1.2 What you don’t want is:

	A room with plenty of digital screens. You won’t need them as you won’t do any presentation. Apart from this, having screens keeps the walls busy and is likely to distract people from having conversations.

	A room with glass walls

	An open space through which outside people can walk

	A room that gets hot or with low ventilation. Participants will stand up most of the time. They will move around and be standing together in front of an area of work on a wall. This is not possible when you get hot or start to sweat!

	A room that is very bright. We had a case where the room we used was filled with natural light and big windows. It proved to be problematic as it was a source of visual fatigue.

	An island table in the middle. You should look for a room where chairs can quickly be moved around and where tables are pushed on the side for people to put their bags, cups and personal stuff.

	A room with pillars and other physical barriers.

7.1.3 In a nutshell

As mentioned, in our experience, the room is an important enabler of the success of in-person event storming workshops.

Basically, it boils down to: “a room with at least one long wall and enough space for people to move around. Not a fancy/modern one but rather a simple space without chairs or table in the middle”.

7.1.4 What’s next?

Once you booked the right room, you can refer to other chapters in this book: - Use this other checklist to prepare the room when running an event storming - Or use event storming for workflow improvement.

7.2 Need Help with Event Storming? The community has your back!

ℹ️ In this chapter: Unlock Event Storming’s full potential by tapping into the power of community. Learn how to boost your confidence, tackle challenges, and grow expertise!

[image: A white page written “Event Storming Community” on 3 lines, in 3 different colors, handwritten in cursive script. The Event Storming community is human and connected.]
A white page written “Event Storming Community” on 3 lines, in 3 different colors, handwritten in cursive script. The Event Storming community is human and connected.

Event Storming is about fostering collective intelligence. But here’s a secret: collective intelligence doesn’t stop at the workshop! There’s a thriving online community of Event Storming enthusiasts who can help you every step of the way. Whether you’re about to run your first workshop or refining your facilitation skills, this community can be a game-changer.

7.2.1 Every Problem Has Its Solution

Below are common hurdles you might face, and the solutions that can help you move past them.

7.2.1.1 Feeling Uncertain Before Your First Workshop

It’s natural to feel unsure before running your first Event Storming session, so:

	Ask the Community: Tap into the wisdom of the online community. Experienced facilitators are ready to share advice and boost your confidence.

	Create a Community of Practice: this will let you rehearse facilitation on low-stakes, fictional topics before diving into the real thing.

[image: A man holding his hand to his forehead. Running your first Event Storming workshop can make you feel very concerned if you don’t have the correct support and network to rely on.]
A man holding his hand to his forehead. Running your first Event Storming workshop can make you feel very concerned if you don’t have the correct support and network to rely on.

7.2.1.2 Stuck on a Specific Problem During a Workshop

Even experienced facilitators can hit a wall during a session. If you find yourself stuck on a specific point, Ask the Community. Chances are someone has faced—and solved—a similar issue, and their insights can unblock your progress.

7.2.1.3 Looking to Deepen Your Expertise

After running a few workshops, you might want to refine your skills and go deeper, so:

	Study books and references: further materials, like books, articles, or talks, can broaden your understanding.

	Create a Community of Practice: You can also strengthen your expertise by teaching others through a CoP

	Ask the Community: Finally, always keep the community in mind for those tricky, advanced questions.

Spreading Event Storming

In smaller organizations, spreading Event Storming can be straightforward: involve everyone, make it a success, and you’re done. However, in larger organizations, the process can be more challenging. To address this, internally Create a Community of Practice.

7.2.2 The Tips

7.2.2.1 Ask the Community

Don’t hesitate to contact the online community when you face a specific issue or need a confidence boost. Platforms like X and LinkedIn are full of experienced facilitators who have encountered most of your problems and whose advice can guide you through challenging situations. For example, Alberto Brandolini was kind enough to answer my naïve beginner’s questions on Twitter. Whether it’s about facilitation techniques or how to handle tricky dynamics in a workshop, there’ll always be someone willing to help.

[image: A hand getting out of the screen of a laptop to give a handshake to someone else. The online event storming community is full of experienced facilitators who will give you plenty of perspective and advice regarding any particular challenge you might encounter.]
A hand getting out of the screen of a laptop to give a handshake to someone else. The online event storming community is full of experienced facilitators who will give you plenty of perspective and advice regarding any particular challenge you might encounter.

7.2.2.2 Create a Community of Practice (CoP)

One of the best ways to build confidence is by practicing with others. Starting a Community of Practice allows you to gather peers and dive into Event Storming together.

The Community of Practice is a safe environment where you can practice on fictional topics before running actual workshops. This space allows facilitators to make mistakes, experiment, and refine their skills without pressure. Members learn by teaching and explaining concepts to others, solidifying their expertise.

Perhaps most importantly, a Community of Practice is a powerful vehicle for spreading Event Storming. As you share success stories and learn from each other’s experiences, more people will become interested in adopting the practice. Whether you’re looking to promote Event Storming in a large organization or spread it within your local community, a Community of Practice offers the collaborative foundation to make it happen.

Here’s a typical way to kickstart a community.

	Find a few motivated people to start the community with you.

	Send an open invitation for a two-hour Big Picture Event Storming practice session. Use a known business like “Uber.”

	Keep some time at the end for open discussion and agree on a date for the next session.

	Create a dedicated wiki space and chat channel where members can exchange best practices, ask questions, and share experiences.

	Repeat

Check out Emily Weber’s Building Successful Communities of Practices book to learn more.

7.2.2.3 Study Other Books and References

Event Storming is a continuously evolving practice; there’s always more to learn. Here are valuable references you can look into:

	Introducing Event Storming, by Alberto Brandolini: the reference book on Event Storming from its creator. Read this one if you want to understand the foundations of Event Storming.

	The Event Storming Handbook, by Paul Rayner, is a practical “getting started” book in the same flavor as the one you are reading. It’s a great way to get more “how-tos” and perspective on facilitation.

	Awesome Event Storming, by Mariusz Gil: a curated list of Event Storming material you can find online.

	Finally, remember to check Domain-Driven Design conferences or meetups near you. Event Storming is a central practice in DDD, and you’ll find supportive people in these communities. If this is impractical, you can also check the Virtual DDD community.

[image: A stack of books in a library. If you don’t find an answer to a particular question here, checkout the other great Event Storming books and websites.]
A stack of books in a library. If you don’t find an answer to a particular question here, checkout the other great Event Storming books and websites.

7.2.3 Keep growing and stay connected

Event Storming is powerful, but you don’t have to learn it alone. By tapping into the online community, forming a Community of Practice, and diving into additional material, you’ll find the support, guidance, and knowledge you need. Keep these tips handy and return to them whenever you feel stuck or want to take your practice to the next level. Your Event Storming journey is only beginning!

8 Conclusion

References

EPUB/media/file56.jpg

EPUB/media/file115.jpg

EPUB/media/file13.jpg
cCur TEQMS WITH FUNC‘H%@/_
ARCHITECTORE IN MINTS

EPUB/media/file8.jpg

EPUB/media/file99.jpg
" s agmmpman g =g

| =
Ly =

EPUB/media/file64.jpg
o
——
e

-DESIGN

) 6l

EPUB/media/file48.jpg

EPUB/media/file21.jpg

EPUB/media/file72.jpg

EPUB/media/file123.jpg

EPUB/media/file35.png

EPUB/media/file105.jpg
If # defect goes
up, feature
velocity goes
down

Example

If feature
delivery
velocity goes
up, # defect
goes up

EPUB/media/file58.jpg

EPUB/media/file11.jpg

EPUB/media/file97.jpg
A problematic area or pain point for us or others.
Use this sticky note to identify topics to discuss later
or park discussions

EPUB/media/file15.jpg

EPUB/media/file131.jpg

EPUB/media/file109.jpg
Incoming arrows
(number of other variables impacting the variable)

Classification of the variables based on the number of relationships

Outgoing arrows
(number of other variables impacted by the variable)

EPUB/media/file54.jpg

EPUB/media/file80.jpg

EPUB/nav.xhtml

The 1 hour Event Storming book

		The 1 hour Event Storming book

		Why this book?

		1 Preamble		1.1 How to read this book

		1.2 If you are reading the epub version

		2 The essence of Event storming		2.1 Events are things that happen

		2.2 Why would you want to visualize events on a wall?

		2.3 Summary: what is event storming about?

		3 Big picture Event Storming		3.1 Why would you want to run a big picture event storming?		3.1.1 Two architecture failure stories

		3.1.2 Common symptoms

		3.1.3 Big Picture Event Storming is the middle way!

		3.1.4 How do you know if Big Picture Event Storming could help you?

		3.2 How to prepare a Big Picture Event Storming workshop		3.2.1 Homework first!

		3.2.2 Active Sponsorship

		3.2.3 A clear Scope

		3.2.4 The Right Audience

		3.2.5 An Enticing Invitation

		3.2.6 An Effective Briefing

		3.2.7 On good tracks!

		3.3 How to prepare the room for a Big Picture Event Storming		3.3.1 A Visual Agenda

		3.3.2 Infinite Design Space

		3.3.3 Stickies

		3.3.4 Sharpies

		3.3.5 No Chairs

		3.3.6 A Small Table

		3.3.7 One last thing… food!

		3.3.8 Everything is ready!

		3.4 Step by Step Guide to run your Big Picture Event Storming		3.4.1 Preparing the room

		3.4.2 Energizing the audience

		3.4.3 Briefing and presenting the plan

		3.4.4 Generating Domain Events

		3.4.5 Sorting Domain Events

		3.4.6 Adding Actors and External Systems

		3.4.7 Storytelling

		3.4.8 Reverse storytelling

		3.4.9 Closing

		3.4.10 What’s next?

		3.4.11 Doors open!

		3.5 Improve collaboration with a Functional Architecture vision draft		3.5.1 Step by step way to draft a functional architecture vision

		3.5.2 What does a functional architecture vision draft look like?

		3.5.3 Why it's easier with a Big Picture Event Storming

		3.5.4 Five reasons why a functional architecture will improve collaboration

		3.5.5 What about YOUR team's architecture vision?

		3.6 Decide to Build or Buy with Big Picture Event Storming		3.6.1 Three flavors of Bounded Contexts

		3.6.2 Collectively classifying your bounded contexts.

		3.6.3 The Outcomes

		3.6.4 Never run a Big Picture Event Storming without classifying the contexts!

		3.7 Read this before applying Big Picture Event Storming to Legacy Systems		3.7.1 Do NOT try to Event Storm your Legacy!

		3.7.2 Start with a 30-minute brief

		3.7.3 Adapt the schedule even more than usual!

		3.7.4 Make stress explicit

		3.7.5 More about Event Storming and Legacy Systems

		3.8 Big Picture Event Storming 3-minutes summary		3.8.1 Why would you want to run a Big Picture Event Storming

		3.8.2 Making the workshop successful

		3.8.3 Functional Architecture

		3.8.4 Dealing with Legacy Code

		3.8.5 Further Steps

		3.8.6 Design-Level Event Storming

		4 Design Level Event Storming		4.1 Why would you do a Design Level Event Storming?		4.1.1 What problems does Design Level Event Storming solve?

		4.1.2 What are the outcomes of Design Level Event Storming?

		4.1.3 How does Design Level Event Storming work?

		4.1.4 On which parts of your system should you run a Design Level Event Storming?

		4.1.5 Conclusion

		4.2 How to explain Design Level Event Storming to your mother		4.2.1 “The picture that explains everything”

		4.2.2 A speech to present Design Level Event Storming

		4.2.3 You’re ready!

		4.3 The Best Agenda For Design-Level Event Storming		4.3.1 The target design

		4.3.2 Domain Events

		4.3.3 Commands

		4.3.4 Actors or policies

		4.3.5 Blank stickies for what the actors will see

		4.3.6 Read models and UX mock-ups

		4.3.7 External systems

		4.3.8 Blank Business Rules

		4.3.9 Business Rules

		4.3.10 Aggregates of Business Rules

		4.3.11 Aggregates Names

		4.3.12 That’s all, folks!

		4.4 Design Level Event Storming 3-minutes summary		4.4.1 Why would you run a Design Level Event Storming?

		4.4.2 What is Design Level Event Storming

		4.4.3 How to run a Design Level Event Storming

		4.4.4 Further Steps

		4.4.5 Event Storming the Flow

		5 Event Storming the flow		5.1 Three questions to know if event storming the flow could help you		5.1.1 The story of a team that was performing

		5.1.2 The story of a team that was anticipating market needs

		5.1.3 Why are these stories similar?

		5.1.4 What would an event storming the flow workshop bring?

		5.1.5 How to know if Event Storming the Flow could help you?

		5.2 Five ingredients to prepare before starting an event storming of your workflow		5.2.1 First ingredient: a flow

		5.2.2 Second ingredient: the right attendees

		5.2.3 Third ingredient: a workshop intent

		5.2.4 Fourth ingredient: an introduction of Event Storming the Flow in a few words

		5.2.5 Fifth ingredient: a real use case

		5.2.6 Conclusion

		5.3 The steps to visualize your workflow with Event Storming		5.3.1 Visualization? Why?

		5.3.2 Why Event Storming?

		5.3.3 The step-by-step guide to model your workflow with Event Storming

		5.3.4 Conclusion and next

		5.4 How Metaphors can help you focus and succeed in Event Storming		5.4.1 First: Identify the main steps of the workflow

		5.4.2 Second: Get insights from looking at the visual.

		5.4.3 Third: Pick a title

		5.4.4 Finally: Why is this activity useful? What are the benefits?

		5.5 How to discover the wicked vicious circles in your workflow?		5.5.1 Vicious circles?

		5.5.2 Step 1: introduce the concepts of variables.

		5.5.3 Step 2: Have the participants identify the variables in their workflow .

		5.5.4 Step 3: explain the concept of causal loops.

		5.5.5 Step 4: Create a simple causal loop diagram.

		5.6 Identify where to act to improve your workflow		5.6.1 What can you do now?

		5.6.2 Conclusion

		5.7 Define actions that unlock lasting workflow improvements		5.7.1 Select the most relevant variables.

		5.7.2 Identify small and feasible actions

		5.7.3 Use an action template.

		5.7.4 Planning actions and following-up and next

		5.7.5 Conclusion

		5.8 Event Storming the flow 3-minutes summary

		6 Rethinking Event Storming in Remote		6.1 Why Go Remote with Event Storming? The Surprising Benefits		6.1.1 Why run an Event Storming remotely?

		6.1.2 Remote ES as an opportunity

		6.1.3 So, what are the limitations of remote Event Storming?

		6.1.4 Embrace remote Event Storming

		6.2 Simplify Remote Event Storming With 7 Essential Practices		6.2.1 Split into short sessions

		6.2.2 Regularly break out into topic rooms

		6.2.3 Assign collaboration roles

		6.2.4 Merge work with Silent Sorting

		6.2.5 Keep the board self-explanatory

		6.2.6 Make participants practice first

		6.2.7 Find a Co-Facilitator

		6.2.8 The benefits of making the implicit explicit

		6.2.9 Do you feel ready?

		6.3 Your Step-by-Step Guide to Remote Event Storming		6.3.1 Preparation

		6.3.2 The Workshop

		6.3.3 Benefits

		6.3.4 You are ready!

		6.4 Leverage splitting a session in small chunks in remote

		6.5 How to keep people engaged in a remote Event Storming

		6.6 Remote Event Storming in 3 minutes

		7 General tips for Event Storming		7.1 The ideal room for your in-person Event Storming		7.1.1 What you want for your room is:

		7.1.2 What you don’t want is:

		7.1.3 In a nutshell

		7.1.4 What’s next?

		7.2 Need Help with Event Storming? The community has your back!		7.2.1 Every Problem Has Its Solution

		7.2.2 The Tips

		7.2.3 Keep growing and stay connected

		8 Conclusion

		References

 		
 Title Page

 		
 Cover

EPUB/media/file70.jpg
o <TOP GAMES

SE Plioking Pideform for
THTop Gomes

x Bosicess Heded
free Yolay free bo create.

< Pay for custom Servicas: design, cole ©r the rules, e
<l wdibion o hord game, Foke comission

2

stmu:
Aitrock players wih Classies.
- Mrac designas wth Freemiom and

bebo b ol e
j «Use Gonbent mrk.‘[...d

St b epple gome b

e
rolebesk
Vidio chak toenforce rules

EPUB/media/file113.jpg

EPUB/media/file100.jpg

EPUB/media/file23.jpg
‘*“1 - - AR | Giugs .
e S Bl

EPUB/media/file66.jpg

EPUB/media/file46.jpg
2% J | el

torial /dikts'to el ag
e a dictator 2 overbearing
orially adv. [Latin: related

daTSon [Ik[@n] n. manner

ciation in spgakix:xg or singin
dictio from dico dict- say]

dictionary /‘dikfensri/ n. (p

k listing (usu. alphabetic
xglaining the wqrds of a lar
giving corresponding words i
language. 2 reference book ¢

EPUB/media/file1.jpg
WY HORRIG ROUTHE

Heard swicthed mam GOt Tooka Got wad Putmy GOtOut
thealarm thealarm clock rang 5 Pl e e
ok cockoff agin Up shower dresse coation) Bl

EPUB/media/file125.jpg

EPUB/media/file111.jpg
We think the first thing to do to...

verb + what (change, improve, update, redefine...)

isto...

ACTION (where, when, who).

We will know that our hypothesis is correct if we observe...

What? Moving in which direction?

We think this can be checked in (duration) ..
Then the 2 or 3 next steps may probably be (next actions) ..

EPUB/media/file86.png
Philippe Bourgau - Mar 15, 2019 X
@pbourgau - Follow

@ziobrando What's your favourite way to materialize decisions during
an #EventStorming workshop? cc @jmkhael

Alberto Brandolini
@ziobrando - Follow
Depends on the decisions, and on the context. Usually

putting decisions on a flip chart and sharing pictures
might do the trick.

5:56 PM - Mar 15, 2019 @

®2 ®rpy &

EPUB/media/file52.jpg

EPUB/media/file82.jpg

EPUB/media/file95.jpg
Use case

What is a topic you recently
worked on, that you would
qualify as quite representative
of how the work is performed?

EPUB/media/file17.jpg
“Everybody knows the problem: we need to be more innovative. Now we've got the solution
Gamestorming. This smart, fun, hands-on book will energize your brain and mobilize your
creativity—and do it using stuff you already have in your office supply closet!"”

— Danlel . Pk, authorof Drve and A Wale New Mind

me.
storming

A Playbook for Innovators,
Rulebreakers, and Changemakers

Dave Gray
Sunni Brown
O'REILLY" James Macanufo

EPUB/media/file107.jpg
The variable "WIP"
has 2 incoming and
2 outgoing arrows

EPUB/media/file110.jpg
Incoming arrows
(number of other variables impacting the variable)

Classification of the variables based on the number of relationships

Outgoing arrows
(number of other variables impacted by the variable)

EPUB/media/file102.jpg

EPUB/media/file26.jpg

EPUB/media/file90.png
Example

e . e

e caney

ey s \ B R) iyee
. e

sesup

EPUB/media/file51.jpg
%pagg: S
=

= =
=

EPUB/media/file128.jpg

EPUB/media/file60.jpg

EPUB/media/file136.jpg

EPUB/media/file77.jpg
t {/‘ (|

{ 4|
AYNG Walva
= (

oW B L QUOUA

RV // 1’{_

EPUB/media/file119.jpg

EPUB/media/file18.jpg

EPUB/media/file94.jpg

EPUB/media/file84.jpg

EPUB/media/cover.jpg

EPUB/media/file67.jpg

EPUB/media/file41.jpg

EPUB/media/file2.jpg
NEXT WEEK-END | WISH TO HAVE

played Sh‘zi:tr Sﬁ:nK hada bought 27 hadanice vatchd the
; - groceries a next chapter
with my Sy drink with telocst dinnerwith SR

kids e friends Sl myparner e

EPUB/media/file32.jpg
Plreirhate

Concor @r\sﬁ Flow.s

EPUB/media/file121.jpg

EPUB/media/file62.jpg

EPUB/media/file37.jpg

EPUB/media/file45.jpg

EPUB/media/file6.jpg

EPUB/media/file88.jpg

EPUB/media/file24.jpg

EPUB/media/file29.png

EPUB/media/file75.jpg
i e
N\ q}\V\.Q i\‘xf\
o

W 9 OUA

/ \Lf\‘ (

EPUB/media/file117.jpg
TEAM @TES ENEINEERING

Streaming
sponsored by:

EPUB/media/file104.jpg
Potential variables

#of
open
options

quantity
of
unkowns

Costor
Surane
assumpions

identified
business.
need/use

invalvement
ofthe
*doers"

Pressure
to
commit.

Quantity of
technical
debe

How much
theuseris
involved

Available
bandwidth

other/
create
your own

other /
create
your own

other /
create
your own

EPUB/media/file92.jpg

EPUB/media/file33.png

EPUB/media/file134.jpg

EPUB/media/file89.png

EPUB/media/file4.jpg

EPUB/media/file43.jpg

EPUB/media/file69.jpg
'f‘ Pr\\S
o M‘E EVE“/T””"

DDJ‘(NN

. BVENTS
L TTS———

| 1 ‘ 1" £ xRAIN S

neck

\ '_ EXTERNAL
. ‘ SKTENS
e BL P*NK BuSiNESS

o R ULE
THESE g

o A GGREGHTES
ﬁgmea E NAME " -

EPUB/media/file81.jpg
i
BEEEE
= -l B

5 =
- E==E

EPUB/media/file73.jpg

EPUB/media/file39.jpg

EPUB/media/file87.png

EPUB/media/file132.jpg

EPUB/media/file12.jpg

EPUB/media/file57.jpg

EPUB/media/file106.jpg

EPUB/media/file14.jpg
OPTIONS, FUTURES,
AND
OTHER DERIVATIVES

John C. Hull

Sankarshan Basu

EPUB/media/file55.jpg

EPUB/media/file20.jpg

EPUB/media/file7.jpg

EPUB/media/file63.jpg

EPUB/media/file28.png

EPUB/media/file122.jpg

EPUB/media/file98.jpg
The role responsible for carrying out the event or
m series of events

EPUB/media/file114.jpg

EPUB/media/file49.jpg

EPUB/media/file71.jpg

EPUB/media/file126.jpg
e X W Eguron X ® Wit % Tekes X

Grmoverse B Tenpines v Q s

110 event storm templates found

#veysome Login

DDD: Disoover User Journeys w/
Event Storms

EPUB/media/file112.jpg

EPUB/media/file130.jpg

EPUB/media/file96.jpg
A step that happens in the process.
Phrased in past tense. e.g. Pull request Created

EPUB/media/file53.jpg
' 4

a0

EPUB/media/file83.jpg

EPUB/media/file10.jpg

EPUB/media/file59.jpg

EPUB/media/file40.jpg
r\ p.m'1 J
ld Do Not

Cross
q This Barrier
-_—_—— 4 tJ

EPUB/media/file108.jpg
Incoming arrows

(number of other variables impacting the variable)

Classification of the variables based on the number of relationships

CRITICAL: Difficult to move, risk
‘when impacting the workflow

INERTIA: easy to move, low impact
on the workflow

Outgoing arrows
(number of other variables impacted by the variable)

EPUB/media/file16.jpg

EPUB/media/file91.png

EPUB/media/file9.jpg
—

EPUB/media/file22.jpg

EPUB/media/file124.jpg

EPUB/media/file47.jpg

EPUB/media/file78.jpg

EPUB/media/file65.jpg
b
-
g
(]
-
2
w
>
u

EPUB/media/file0.jpg

EPUB/media/file30.png

EPUB/media/file27.jpg
use case driven - Aug 21, 2015 X
@tpierrain - Follow
Replying to @ziobrando

@ziobrando @mathiasverraes Yes, but here | have some big mouth
people that may disengage others saying "we're too much in here.it's
wasting”

Alberto Brandolini
@ziobrando - Follow

@tpierrain @mathiasverraes "it's developer's
understanding, not your knowledge that becomes
software" | once said. Guys seemed to understand

12:08 PM - Aug 21, 2015 ®

@ 37 @ Reply (2 Copy link to post

Read 1 reply

EPUB/media/file3.jpg

EPUB/media/file42.jpg
.. /'--'
N smlp — — _ -,
/- b-.--.

EPUB/media/file93.jpg

EPUB/media/file19.jpg

EPUB/media/file79.jpg

EPUB/media/file50.jpg
IR ‘

/.
r T
e SCORE

) \4
BUY ousiRce.
m:
oK mWSP‘EMD F I &

o 5 e

EPUB/media/file85.jpg
5- BE o
== - \
® /’g-.: |

P \ﬂ===-@
T \ /
-

~

EPUB/media/file76.jpg

EPUB/media/file36.jpg

EPUB/media/file101.jpg

EPUB/media/file127.jpg

EPUB/media/file118.jpg
7 Essential Practices
for Remote Event
Storming

| ———————

EPUB/media/file135.jpg

EPUB/media/file5.jpg
@ﬁﬂ? = E

EPUB/media/file68.jpg

EPUB/media/file44.jpg
4

!

Sales Context

P R R

Support Context

EPUB/media/file38.jpg

EPUB/media/file103.jpg

EPUB/media/file31.jpg
You DO NoT
ThALA ABOUT PDD

INCREASE
:nu.ueom v 02D
D.nnl»l EAP!RTS iNsSTERD

\ Y

DEUGHT
DormN EXPERTS [IOON ps/phiippebourgaunct

EPUB/media/file25.jpg
:H"'I DPovble POVY\Oclo ro

EPUB/media/file116.jpg

EPUB/media/file61.jpg

EPUB/media/file74.jpg

EPUB/media/file129.jpg

EPUB/media/file120.jpg

EPUB/media/file34.png

EPUB/media/file133.jpg

